/* * Jalview - A Sequence Alignment Editor and Viewer (Version 2.8) * Copyright (C) 2012 J Procter, AM Waterhouse, LM Lui, J Engelhardt, G Barton, M Clamp, S Searle * * This file is part of Jalview. * * Jalview is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. * * Jalview is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with Jalview. If not, see . */ package jalview.datamodel.xdb.embl; import jalview.datamodel.DBRefEntry; import jalview.datamodel.DBRefSource; import jalview.datamodel.FeatureProperties; import jalview.datamodel.Mapping; import jalview.datamodel.Sequence; import jalview.datamodel.SequenceFeature; import jalview.datamodel.SequenceI; import java.util.Enumeration; import java.util.Hashtable; import java.util.Iterator; import java.util.Vector; public class EmblEntry { String accession; String version; String taxDivision; String desc; String rCreated; String rLastUpdated; String lastUpdated; Vector keywords; Vector refs; Vector dbRefs; Vector features; EmblSequence sequence; /** * @return the accession */ public String getAccession() { return accession; } /** * @param accession * the accession to set */ public void setAccession(String accession) { this.accession = accession; } /** * @return the dbRefs */ public Vector getDbRefs() { return dbRefs; } /** * @param dbRefs * the dbRefs to set */ public void setDbRefs(Vector dbRefs) { this.dbRefs = dbRefs; } /** * @return the desc */ public String getDesc() { return desc; } /** * @param desc * the desc to set */ public void setDesc(String desc) { this.desc = desc; } /** * @return the features */ public Vector getFeatures() { return features; } /** * @param features * the features to set */ public void setFeatures(Vector features) { this.features = features; } /** * @return the keywords */ public Vector getKeywords() { return keywords; } /** * @param keywords * the keywords to set */ public void setKeywords(Vector keywords) { this.keywords = keywords; } /** * @return the lastUpdated */ public String getLastUpdated() { return lastUpdated; } /** * @param lastUpdated * the lastUpdated to set */ public void setLastUpdated(String lastUpdated) { this.lastUpdated = lastUpdated; } /** * @return the refs */ public Vector getRefs() { return refs; } /** * @param refs * the refs to set */ public void setRefs(Vector refs) { this.refs = refs; } /** * @return the releaseCreated */ public String getRCreated() { return rCreated; } /** * @param releaseCreated * the releaseCreated to set */ public void setRcreated(String releaseCreated) { this.rCreated = releaseCreated; } /** * @return the releaseLastUpdated */ public String getRLastUpdated() { return rLastUpdated; } /** * @param releaseLastUpdated * the releaseLastUpdated to set */ public void setRLastUpdated(String releaseLastUpdated) { this.rLastUpdated = releaseLastUpdated; } /** * @return the sequence */ public EmblSequence getSequence() { return sequence; } /** * @param sequence * the sequence to set */ public void setSequence(EmblSequence sequence) { this.sequence = sequence; } /** * @return the taxDivision */ public String getTaxDivision() { return taxDivision; } /** * @param taxDivision * the taxDivision to set */ public void setTaxDivision(String taxDivision) { this.taxDivision = taxDivision; } /** * @return the version */ public String getVersion() { return version; } /** * @param version * the version to set */ public void setVersion(String version) { this.version = version; } /* * EMBL Feature support is limited. The text below is included for the benefit * of any developer working on improving EMBL feature import in Jalview. * Extract from EMBL feature specification see * http://www.embl-ebi.ac.uk/embl/Documentation * /FT_definitions/feature_table.html 3.5 Location 3.5.1 Purpose * * The location indicates the region of the presented sequence which * corresponds to a feature. * * 3.5.2 Format and conventions The location contains at least one sequence * location descriptor and may contain one or more operators with one or more * sequence location descriptors. Base numbers refer to the numbering in the * entry. This numbering designates the first base (5' end) of the presented * sequence as base 1. Base locations beyond the range of the presented * sequence may not be used in location descriptors, the only exception being * location in a remote entry (see 3.5.2.1, e). * * Location operators and descriptors are discussed in more detail below. * * 3.5.2.1 Location descriptors * * The location descriptor can be one of the following: (a) a single base * number (b) a site between two indicated adjoining bases (c) a single base * chosen from within a specified range of bases (not allowed for new entries) * (d) the base numbers delimiting a sequence span (e) a remote entry * identifier followed by a local location descriptor (i.e., a-d) * * A site between two adjoining nucleotides, such as endonucleolytic cleavage * site, is indicated by listing the two points separated by a carat (^). The * permitted formats for this descriptor are n^n+1 (for example 55^56), or, * for circular molecules, n^1, where "n" is the full length of the molecule, * ie 1000^1 for circular molecule with length 1000. * * A single base chosen from a range of bases is indicated by the first base * number and the last base number of the range separated by a single period * (e.g., '12.21' indicates a single base taken from between the indicated * points). From October 2006 the usage of this descriptor is restricted : it * is illegal to use "a single base from a range" (c) either on its own or in * combination with the "sequence span" (d) descriptor for newly created * entries. The existing entries where such descriptors exist are going to be * retrofitted. * * Sequence spans are indicated by the starting base number and the ending * base number separated by two periods (e.g., '34..456'). The '<' and '>' * symbols may be used with the starting and ending base numbers to indicate * that an end point is beyond the specified base number. The starting and * ending base positions can be represented as distinct base numbers * ('34..456') or a site between two indicated adjoining bases. * * A location in a remote entry (not the entry to which the feature table * belongs) can be specified by giving the accession-number and sequence * version of the remote entry, followed by a colon ":", followed by a * location descriptor which applies to that entry's sequence (i.e. * J12345.1:1..15, see also examples below) * * 3.5.2.2 Operators * * The location operator is a prefix that specifies what must be done to the * indicated sequence to find or construct the location corresponding to the * feature. A list of operators is given below with their definitions and most * common format. * * complement(location) Find the complement of the presented sequence in the * span specified by " location" (i.e., read the complement of the presented * strand in its 5'-to-3' direction) * * join(location,location, ... location) The indicated elements should be * joined (placed end-to-end) to form one contiguous sequence * * order(location,location, ... location) The elements can be found in the * specified order (5' to 3' direction), but nothing is implied about the * reasonableness about joining them * * Note : location operator "complement" can be used in combination with * either " join" or "order" within the same location; combinations of "join" * and "order" within the same location (nested operators) are illegal. * * * * 3.5.3 Location examples * * The following is a list of common location descriptors with their meanings: * * Location Description * * 467 Points to a single base in the presented sequence * * 340..565 Points to a continuous range of bases bounded by and including the * starting and ending bases * * <345..500 Indicates that the exact lower boundary point of a feature is * unknown. The location begins at some base previous to the first base * specified (which need not be contained in the presented sequence) and * continues to and includes the ending base * * <1..888 The feature starts before the first sequenced base and continues to * and includes base 888 * * 1..>888 The feature starts at the first sequenced base and continues beyond * base 888 * * 102.110 Indicates that the exact location is unknown but that it is one of * the bases between bases 102 and 110, inclusive * * 123^124 Points to a site between bases 123 and 124 * * join(12..78,134..202) Regions 12 to 78 and 134 to 202 should be joined to * form one contiguous sequence * * * complement(34..126) Start at the base complementary to 126 and finish at * the base complementary to base 34 (the feature is on the strand * complementary to the presented strand) * * * complement(join(2691..4571,4918..5163)) Joins regions 2691 to 4571 and 4918 * to 5163, then complements the joined segments (the feature is on the strand * complementary to the presented strand) * * join(complement(4918..5163),complement(2691..4571)) Complements regions * 4918 to 5163 and 2691 to 4571, then joins the complemented segments (the * feature is on the strand complementary to the presented strand) * * J00194.1:100..202 Points to bases 100 to 202, inclusive, in the entry (in * this database) with primary accession number 'J00194' * * join(1..100,J00194.1:100..202) Joins region 1..100 of the existing entry * with the region 100..202 of remote entry J00194 */ /** * Recover annotated sequences from EMBL file * * @param noNa * don't return nucleic acid sequences * @param sourceDb * TODO * @param noProtein * don't return any translated protein sequences marked in features * @return dataset sequences with DBRefs and features - DNA always comes first */ public jalview.datamodel.SequenceI[] getSequences(boolean noNa, boolean noPeptide, String sourceDb) { // TODO: ensure emblEntry.getSequences behaves correctly for returning all // cases of noNa and noPeptide Vector seqs = new Vector(); Sequence dna = null; if (!noNa) { // In theory we still need to create this if noNa is set to avoid a null // pointer exception dna = new Sequence(sourceDb + "|" + accession, sequence.getSequence()); dna.setDescription(desc); DBRefEntry retrievedref = new DBRefEntry(sourceDb, version, accession); dna.addDBRef(retrievedref); // add map to indicate the sequence is a valid coordinate frame for the // dbref retrievedref.setMap(new Mapping(null, new int[] { 1, dna.getLength() }, new int[] { 1, dna.getLength() }, 1, 1)); // TODO: transform EMBL Database refs to canonical form if (dbRefs != null) for (Iterator i = dbRefs.iterator(); i.hasNext(); dna .addDBRef((DBRefEntry) i.next())) ; } try { for (Iterator i = features.iterator(); i.hasNext();) { EmblFeature feature = (EmblFeature) i.next(); if (!noNa) { if (feature.dbRefs != null && feature.dbRefs.size() > 0) { for (Iterator dbr = feature.dbRefs.iterator(); dbr.hasNext(); dna .addDBRef((DBRefEntry) dbr.next())) ; } } if (FeatureProperties.isCodingFeature(sourceDb, feature.getName())) { parseCodingFeature(feature, sourceDb, seqs, dna, noPeptide); } else { // General feature type. if (!noNa) { if (feature.dbRefs != null && feature.dbRefs.size() > 0) { for (Iterator dbr = feature.dbRefs.iterator(); dbr.hasNext(); dna .addDBRef((DBRefEntry) dbr.next())) ; } } } } } catch (Exception e) { System.err.println("EMBL Record Features parsing error!"); System.err .println("Please report the following to help@jalview.org :"); System.err.println("EMBL Record " + accession); System.err.println("Resulted in exception: " + e.getMessage()); e.printStackTrace(System.err); } if (!noNa && dna != null) { seqs.add(dna); } SequenceI[] sqs = new SequenceI[seqs.size()]; for (int i = 0, j = seqs.size(); i < j; i++) { sqs[i] = (SequenceI) seqs.elementAt(i); seqs.set(i, null); } return sqs; } /** * attempt to extract coding region and product from a feature and properly * decorate it with annotations. * * @param feature * coding feature * @param sourceDb * source database for the EMBLXML * @param seqs * place where sequences go * @param dna * parent dna sequence for this record * @param noPeptide * flag for generation of Peptide sequence objects */ private void parseCodingFeature(EmblFeature feature, String sourceDb, Vector seqs, Sequence dna, boolean noPeptide) { boolean isEmblCdna = sourceDb.equals(DBRefSource.EMBLCDS); // extract coding region(s) jalview.datamodel.Mapping map = null; int[] exon = null; if (feature.locations != null && feature.locations.size() > 0) { for (Enumeration locs = feature.locations.elements(); locs .hasMoreElements();) { EmblFeatureLocations loc = (EmblFeatureLocations) locs .nextElement(); int[] se = loc.getElementRanges(accession); if (exon == null) { exon = se; } else { int[] t = new int[exon.length + se.length]; System.arraycopy(exon, 0, t, 0, exon.length); System.arraycopy(se, 0, t, exon.length, se.length); exon = t; } } } String prseq = null; String prname = new String(); String prid = null; Hashtable vals = new Hashtable(); int prstart = 1; // get qualifiers if (feature.getQualifiers() != null && feature.getQualifiers().size() > 0) { for (Iterator quals = feature.getQualifiers().iterator(); quals .hasNext();) { Qualifier q = (Qualifier) quals.next(); if (q.getName().equals("translation")) { StringBuffer prsq = new StringBuffer(q.getValues()[0]); int p = prsq.indexOf(" "); while (p > -1) { prsq.deleteCharAt(p); p = prsq.indexOf(" ", p); } prseq = prsq.toString(); prsq = null; } else if (q.getName().equals("protein_id")) { prid = q.getValues()[0]; } else if (q.getName().equals("codon_start")) { prstart = Integer.parseInt(q.getValues()[0]); } else if (q.getName().equals("product")) { prname = q.getValues()[0]; } else { // throw anything else into the additional properties hash String[] s = q.getValues(); StringBuffer sb = new StringBuffer(); if (s != null) { for (int i = 0; i < s.length; i++) { sb.append(s[i]); sb.append("\n"); } } vals.put(q.getName(), sb.toString()); } } } Sequence product = null; exon = adjustForPrStart(prstart, exon); if (prseq != null && prname != null && prid != null) { // extract proteins. product = new Sequence(prid, prseq, 1, prseq.length()); product.setDescription(((prname.length() == 0) ? "Protein Product from " + sourceDb : prname)); if (!noPeptide) { // Protein is also added to vector of sequences returned seqs.add(product); } // we have everything - create the mapping and perhaps the protein // sequence if (exon == null || exon.length == 0) { System.err .println("Implementation Notice: EMBLCDS records not properly supported yet - Making up the CDNA region of this sequence... may be incorrect (" + sourceDb + ":" + getAccession() + ")"); if (prseq.length() * 3 == (1 - prstart + dna.getSequence().length)) { System.err .println("Not allowing for additional stop codon at end of cDNA fragment... !"); // this might occur for CDS sequences where no features are // marked. exon = new int[] { dna.getStart() + (prstart - 1), dna.getEnd() }; map = new jalview.datamodel.Mapping(product, exon, new int[] { 1, prseq.length() }, 3, 1); } if ((prseq.length() + 1) * 3 == (1 - prstart + dna.getSequence().length)) { System.err .println("Allowing for additional stop codon at end of cDNA fragment... will probably cause an error in VAMSAs!"); exon = new int[] { dna.getStart() + (prstart - 1), dna.getEnd() - 3 }; map = new jalview.datamodel.Mapping(product, exon, new int[] { 1, prseq.length() }, 3, 1); } } else { // Trim the exon mapping if necessary - the given product may only be a // fragment of a larger protein. (EMBL:AY043181 is an example) if (isEmblCdna) { // TODO: Add a DbRef back to the parent EMBL sequence with the exon // map // if given a dataset reference, search dataset for parent EMBL // sequence if it exists and set its map // make a new feature annotating the coding contig } else { // final product length trunctation check map = new jalview.datamodel.Mapping(product, adjustForProteinLength(prseq.length(), exon), new int[] { 1, prseq.length() }, 3, 1); // reconstruct the EMBLCDS entry // TODO: this is only necessary when there codon annotation is // complete (I think JBPNote) DBRefEntry pcdnaref = new DBRefEntry(); pcdnaref.setAccessionId(prid); pcdnaref.setSource(DBRefSource.EMBLCDS); pcdnaref.setVersion(getVersion()); // same as parent EMBL version. jalview.util.MapList mp = new jalview.util.MapList(new int[] { 1, prseq.length() }, new int[] { 1 + (prstart - 1), (prstart - 1) + 3 * prseq.length() }, 1, 3); // { 1 + (prstart - 1) * 3, // 1 + (prstart - 1) * 3 + prseq.length() * 3 - 1 }, new int[] // { 1prstart, prstart + prseq.length() - 1 }, 3, 1); pcdnaref.setMap(new Mapping(mp)); if (product != null) product.addDBRef(pcdnaref); } } // add cds feature to dna seq - this may include the stop codon for (int xint = 0; exon != null && xint < exon.length; xint += 2) { SequenceFeature sf = new SequenceFeature(); sf.setBegin(exon[xint]); sf.setEnd(exon[xint + 1]); sf.setType(feature.getName()); sf.setFeatureGroup(sourceDb); sf.setDescription("Exon " + (1 + (int) (xint / 2)) + " for protein '" + prname + "' EMBLCDS:" + prid); sf.setValue(FeatureProperties.EXONPOS, new Integer(1 + xint)); sf.setValue(FeatureProperties.EXONPRODUCT, prname); if (vals != null && vals.size() > 0) { Enumeration kv = vals.elements(); while (kv.hasMoreElements()) { Object key = kv.nextElement(); if (key != null) sf.setValue(key.toString(), vals.get(key)); } } dna.addSequenceFeature(sf); } } // add dbRefs to sequence if (feature.dbRefs != null && feature.dbRefs.size() > 0) { for (Iterator dbr = feature.dbRefs.iterator(); dbr.hasNext();) { DBRefEntry ref = (DBRefEntry) dbr.next(); ref.setSource(jalview.util.DBRefUtils.getCanonicalName(ref .getSource())); // Hard code the kind of protein product accessions that EMBL cite if (ref.getSource().equals(jalview.datamodel.DBRefSource.UNIPROT)) { ref.setMap(map); if (map != null && map.getTo() != null) { map.getTo().addDBRef( new DBRefEntry(ref.getSource(), ref.getVersion(), ref .getAccessionId())); // don't copy map over. if (map.getTo().getName().indexOf(prid) == 0) { map.getTo().setName( jalview.datamodel.DBRefSource.UNIPROT + "|" + ref.getAccessionId()); } } } if (product != null) { DBRefEntry pref = new DBRefEntry(ref.getSource(), ref.getVersion(), ref.getAccessionId()); pref.setMap(null); // reference is direct product.addDBRef(pref); // Add converse mapping reference if (map != null) { Mapping pmap = new Mapping(dna, map.getMap().getInverse()); pref = new DBRefEntry(sourceDb, getVersion(), this.getAccession()); pref.setMap(pmap); if (map.getTo() != null) { map.getTo().addDBRef(pref); } } } dna.addDBRef(ref); } } } private int[] adjustForPrStart(int prstart, int[] exon) { int origxon[], sxpos = -1; int sxstart, sxstop; // unnecessary variables used for debugging // first adjust range for codon start attribute if (prstart > 1) { origxon = new int[exon.length]; System.arraycopy(exon, 0, origxon, 0, exon.length); int cdspos = 0; for (int x = 0; x < exon.length && sxpos == -1; x += 2) { cdspos += exon[x + 1] - exon[x] + 1; if (prstart <= cdspos) { sxpos = x; sxstart = exon[x]; sxstop = exon[x + 1]; // and adjust start boundary of first exon. exon[x] = exon[x + 1] - cdspos + prstart; break; } } if (sxpos > 0) { int[] nxon = new int[exon.length - sxpos]; System.arraycopy(exon, sxpos, nxon, 0, exon.length - sxpos); exon = nxon; } } return exon; } /** * truncate the last exon interval to the prlength'th codon * * @param prlength * @param exon * @return new exon */ private int[] adjustForProteinLength(int prlength, int[] exon) { int origxon[], sxpos = -1, endxon = 0, cdslength = prlength * 3; int sxstart, sxstop; // unnecessary variables used for debugging // first adjust range for codon start attribute if (prlength >= 1 && exon != null) { origxon = new int[exon.length]; System.arraycopy(exon, 0, origxon, 0, exon.length); int cdspos = 0; for (int x = 0; x < exon.length && sxpos == -1; x += 2) { cdspos += exon[x + 1] - exon[x] + 1; if (cdslength <= cdspos) { // advanced beyond last codon. sxpos = x; sxstart = exon[x]; sxstop = exon[x + 1]; if (cdslength != cdspos) { System.err .println("Truncating final exon interval on region by " + (cdspos - cdslength)); } // locate the new end boundary of final exon as endxon endxon = exon[x + 1] - cdspos + cdslength; break; } } if (sxpos != -1) { // and trim the exon interval set if necessary int[] nxon = new int[sxpos + 2]; System.arraycopy(exon, 0, nxon, 0, sxpos + 2); nxon[sxpos + 1] = endxon; // update the end boundary for the new exon // set exon = nxon; } } return exon; } }