
User Guide to
ALSCRIPT - Sequence alignment to

PostScript
Version 2.03

Geoffrey J. Barton

Laboratory of Molecular Biophysics
University of Oxford

Rex Richards Building
South Parks Road
Oxford OX1 3QU

U.K.

Tel: (44) 1865-275368
Fax: (44) 1865-510454

e-mail: gjb@bioch.ox.ac.uk

REFERENCE:
Barton, G. J. (1993),

ALSCRIPT a tool to format multiple sequence alignments
Protein Engineering, Volume 6, No. 1, pp.37-40.

Contents

1 Update History 1

2 Read This First - VERSION 2.0 2

3 Related Programs 2

4 Availability 2

5 Installing ALSCRIPT 2

6 Brief Description of ALSCRIPT 3

7 New Features in Version 1.4.4 4

8 New Features in Version 1.4.5 - Program alsnum 4

9 New Features in Version 2.0 5
9.1 New Step 1 Commands : 5
9.2 New Step 2 Commands : 6
9.3 New special TEXT commands : : : : : : : : : : : : : : : : : : : 7

10 Running ALSCRIPT 8
10.1 Basic Use : 8
10.2 More complex effects - Text Lines, and Masks : : : : : : : : : : 10

11 Using Colour 12

12 The MASK command family 12
12.1 Summary of mask commands : : : : : : : : : : : : : : : : : : : 13

13 Printing ALSCRIPT Files 15

14 Conclusion 15

15 Appendices 15
15.1 ALSCRIPT Command Summary : : : : : : : : : : : : : : : : : 15

15.1.1 STEP 1 COMMANDS : : : : : : : : : : : : : : : : : : 16

1

15.1.2 REQUIRED STEP 1 COMMANDS : : : : : : : : : : : : 16
15.1.3 OPTIONAL STEP 1 COMMANDS : : : : : : : : : : : : 17
15.1.4 STEP 2 COMMANDS : : : : : : : : : : : : : : : : : : 20

15.2 AMPS Block file format : 24
15.3 PostScript Fonts : 25
15.4 386 DOS installation : 26
15.5 TECHNICAL NOTES : 27
15.6 Unix Installation : 27
15.7 VAX/VMS Installation : 28
15.8 Alternative ways of invoking ALSCRIPT : : : : : : : : : : : : : 28
15.9 Program Crashes and Known Bugs : : : : : : : : : : : : : : : : 29
15.10Wish List for next version!! : 30
15.11Acknowledgements : 30
15.12References : 30

1 Update History

VERSION 1.0 19 June 1992
Version 1.1 26 June 1992
Version 1.2 21 October 1992: Add multiple blocks per page option.
Version 1.3 15 November 1992: First Distribution.
Version 1.4 6 December 1992: Add Colour commands.
Version 1.4.1 1 February 1993: Small bug fixes - FULL RE-
LEASE VERSION.
Version 1.4.2 15 February 1993: Make silent_mode toggle.
Version 1.4.3 1 March 1993: Fix bug in colour option.
Version 1.4.4 24 March 1993: Add mask features (should be ver-
sion 1.5).
Version 1.4.5 25 May 1993: Include alsnum program in distribution.

7 June 1993: Fix NO_NUMBERS bug in documentation
Change defaults for -q op-

tion to use MASK.

Version 2.0 23 May 1995: Numerous changes and addi-
tions including the

2

option to colour backgrounds
differently, ommission of idents on
second and subsequent lines, helix,
strand and other special characters,
relative numbering, error checking of
ranges on input, bounding box,
screening, conservation colouring...
Version 2.03 5 June 1996: Small bug fixes - patches incorporated.
BACKGROUND_REGION and BOUNDING_BOX commands moved to
step 1 section.

2 Read This First - VERSION 2.0

This manual describes an interim release of ALSCRIPT that includes many addi-
tional features over the previously distributed Version 1.4.5. I had hoped to make a
lot more changes and improvements before distributing the new version, however
I have not had the time to do this. I am distributing Version 2.0 since the new
features have been used in a number of published alignment figures. Please see
see the Section 9 for details of the new features.

3 Related Programs

The AMPS package (Barton, 1990). This performs multiple sequence alignments
and databank scanning.
AMAS (Livingstone and Barton, 1993, CABIOS, 9, 745-756). Analysis of Mul-
tiply Aligned Sequences. This package uses a sophisticated set-based method to
identify patterns of residue conservation in multiple sequence alignments.
All programs are available by anonymous ftp from geoff.biop.ox.ac.uk. Please
see the README file for details licencing and registration. You can read manuals
for the programs and some related papers at http://geoff.biop.ox.ac.uk/.

3

4 Availability

ALSCRIPT is available free of charge for academic and non-commercial purposes.
Distribution is by anonymous ftp from geoff.biop.ox.ac.uk. See the README
file on the ftp server for details. You need to register with G. J. Barton before
downloading the software.

5 Installing ALSCRIPT

See the appropriate section for the computer type you are using:
For PCs see see Section 15.4. For Unix see see Section 15.6 . For VMS see see
Section 15.7 .

6 Brief Description of ALSCRIPT

ALSCRIPT takes a multiple sequence alignment in AMPS (Barton & Sternberg,
1987, Barton, 1990) block-file format and a set of formatting commands and
produces a PostScript file that may be printed on a PostScript laser printer, or
viewed using a PostScript previewer (e.g. Sun Microsystem’s PageView program).
CLUSTAL and GCG format multiple alignment files may also be used (see below).
ALSCRIPT is NOT a multiple sequence alignment program, nor is it an alignment
editor.
Given a block-file and pointsize (character width/height), ALSCRIPT calculates
how many residues can be fitted across the page, and how many sequences will
fit down the page, it then prints the alignment at the chosen pointsize on as many
pages as are needed. Running ALSCRIPT with a smaller or larger pointsize will
automatically re-scale the alignment to fit on fewer or more pages as appropriate.
The actual page dimensions may be re-set to any value, so if you have access to
an A3 PostScript printer, or typesetting machine, alignments can readily be scaled
to maximise the available space.
Each output page has three basic regions. The left hand edge contains identifier
codes for each sequence. The main part of the page holds the alignment, and the
top part, the position numbers and tick marks. ALSCRIPT commands make use of
a character coordinate system for font changes, and other formatting commands.
Thus, any residue in the alignment may be referred to by its sequence position num-

4

ber (x-axis) and sequence number (y-axis), similarly, ranges of residue positions,
or sequences may also be defined in the character coordinate system.
The basic ALSCRIPT commands allow the following functionality:
Fonts: Any PostScript font at any size may be defined and used on individual
residues, regions or identifier codes.
Boxing: Simple rectangular boxes may be drawn around any part of the alignment.
Particular residue types may be selected and automatically "surrounded" by lines.
For example, if the characters ’G’ and ’P’ are selected, then lines will not be drawn
between G and P characters, but only where G and P border with other characters.
Shading: Grey shading of any level from black to white may be applied to any
region of the alignment, either as a rectangular region, or as residue specific
shading. e.g. "shade all Cys residues between positions 6 and 30"
Text: Specific text strings may be added to the alignment at any position and in
any font or font size.
Lines: Horizontal or vertical lines may be drawn to the left, right, top or bottom
of any residue position or group of positions.
Colour: Characters or character backgrounds may be independently coloured.
The example block file "example1.blc" and command file "example1.als" illustrate
most of these commands in action.
Although written with the aim of producing figures for journal submission, ALSCRIPT
may be used as a tool for interpreting multiple sequence alignments. For example,
the boxing, shading and font changing facilities can be applied to highlight amino
acids of a particular type and thus draw attention to clusters of positive or negative
charge, hydrophobics, etc.

7 New Features in Version 1.4.4

This version introduces the MASK family of commands which allows boxing,
shading etc to be applied according to the frequency of occurence of the character
types at each position in the alignment. For example, it is possible to box positions
where one character is seen in more than N of the sequences. It is also possible to
box/shade etc the most frequently occurring character at each position. Commands
exist to select which characters will be used in the calculation of frequencies and
which will be excluded, thus boxing can be based upon two or more character
types at a position. MASK commands also exist to show residues identical to one
sequence in the set. See the section on MASK below for details.

5

NOTE: Although boxing according to the frequency of amino acids seen at a
position is a popular method of representation it is not usually the most informative.
An analysis that takes into account the physico-chemical properties of the amino
acids and also relates the amino acid similarities to the overall similarity between
the sequences is more helpful in identifying functionally important residues. The
AMAS program (Livingstone and Barton, 1993) applies a flexible hierarchical
set-based approach to this problem.

8 New Features in Version 1.4.5 - Program alsnum

Version 1.4.5 includes the program "alsnum". This is a temporary solution to
the residue numbering problem. Ultimately, these functions will be included as
alscript commands.
alsnum creates a set of TEXT commands that can be incorporated into an alscript
command file to place sequential numbers at any position in the alignment. The
numbers ignore gaps, so the numbering will correspond to the specific sequence
position rather than the alignment.
To use the program:
1. Decide where you want the numbers to be placed. For example, you might
want the numbers above the third sequence in the alignment. If so, make an extra
sequence space above the third sequence using the ADD SEQ command.
2. Decide what is the number of the first residue of the sequence to be numbered.
This will not always be 1 since you may be aligning fragments or domains.
3. Decide the numbering interval (e.g. every 10th amino acid).
4. Run the program.
For example, if you want to add numbers according to sequence 37 of a block file
(junk.blc), calling the first residue of the sequence 12, and with an interval of 5,
and the numbers are to be placed at the location of sequence 3 in the alignment.
Type:
alsnum 37 12 5 3 < junk.blc > junk.text
5. Add the resulting TEXT commands from junk.text to your alscript command
file.

6

9 New Features in Version 2.0

Error checking is now done on all ranges input. If you run ALSCRIPT 2.0 on a file
that worked with ALSCRIPT 1.4.5, and it complains about out of range numbers,
then check your ranges carefully. If you think you are right, then send me a
minimal example of the problem and I will investigate. Versions of ALSCRIPT
before 2.0 would often work happily with out of range numbers and produce
perfectly OK output.
The files ipns.als and ipns.blc show example command and block file that use
most of these new commands. See the examples directory.

9.1 New Step 1 Commands

SCREENSIZE 120
Usually you should not need to change this value, it alters the screening used by
the printer. A value of 120 is used by default. On most 300dpi black and white
printers this gives much smoother greys than the default used in earlier versions
of ALSCRIPT.
PIR SAVE filename
Will cause the block file to be saved into the file “filename” in PIR format. This
can be useful for moving block file alignments to other programs.
MSF SAVE filename
Will cause the block file to be saved into the file “filename” in something that
approximates GCG .msf format. Warning! This has not been fully tested.
NUMBER COLOUR 4
Sets the colour used for numbering at the top of the alignment (no American
spelling at the moment). In this example, colour number 4 has been defined (See
the DEFINE COLOUR command if you are not sure what this means).
SINGLE PAGE
If this is set, ALSCRIPT assumes everything will be plotted on one page. At the
moment, all this does is write the bounding box for the figure, so encapsulating
the PostScript. This may allow the output of alscript to be imported into word
processors etc, but probably not all.
ID ONLY ON FIRST LINE
If this is present, then sequence identifiers will only be printed on the first line of
the alignment. Often this looks better for small alignments than the default.
BACKGROUND COLOUR 7

7

Sets the colour used for the background to the alignment. This can be useful for
preparing figures for projection. At the moment this only works reliably when the
SINGLE PAGE is also set.
BOUNDING BOX x y x1 y1
Defines the bounding box for the figure. This is set in points (1/72 inch). NOTE:
In version 2.0 this was a STEP 2 Command.
BACKGROUND REGION x y x1 y1
Defines the region to colour as background - the default is set up for A4 paper so
US users may have to fiddle with this. Values are points (1/72 inch). NOTE: In
version 2.0 this was a STEP 2 Command.

9.2 New Step 2 Commands

COLOUR TEXT REGION x y x1 y1 colour
Sets the colour for TEXT command output. Similar syntax to COLOUR REGION,
FONT REGION etc.
COLOUR LINE REGION x y x1 y1 colour
Set the colour for LINEs in a region.
CALCONS x y x1 y1
Calculate conservation values according to Zvelebil et al. for the designated
region. (See Livingstone & Barton 1993 for details and further refs)
MASK CONSERVATION cutoff
If CONSCAL has been used, then mask residues according to the conservation
cutoff.
e.g. MASK CONSERVATION 10 would mask all identities, MASK CONSER-
VATION 6 would mask reasonably conserved positions. See examples for more
on this command.
HELIX x1 y x2
Draw a helix from x1 to x2 of sequence y.
STRAND x1 y x2
Draw a strand from x1 to x2 of sequence y.
COIL x1 y x2
Draw a coil (horizontal line) from x1 to x2 of sequence y.
RELATIVE TO <seqnum> <startnum>
Set reference numbers to work relative to sequence number <seqnum>. This
means that in all subsequent commands, ALSCRIPT will translate your x values
into absolute position values in the alignment. This is extremely useful since you

8

can annotate your alignment using your favourite sequences as a reference point.
You no longer have to translate every x position into the alignment position.
<startnum> is optional. If present, it specifies what the first residue in the displayed
sequence is. For example, you may be showing residues 200-500 of a sequence,
so <startnum> would be 200 rather than the default of 1. Warning - this is a very
new feature and bounds checking is not fully enabled for it.
You can use RELATIVE TO several times in the command file to annotate different
sequences. RELATIVE TO 0 resets to the “normal” alignment numbering.

9.3 New special TEXT commands

Some special TEXT commands have been added to allow drawing of alternative
shapes etc. In fact this is how the HELIX, STRAND and COIL commands are
implemented. The text commands are all prefixed by an @ symbol.
e.g. TEXT 3 6 “@fuparrow”
will draw a filled up arrow at position 3,6.
The alternative text commands are:
@leftarrow - an open left pointing arrow.
@fleftarrow - a filled left pointing arrow.
@uparrow - an open up pointing arrow.
@fuparrow - a filled up pointing arrow.
@downarrow - an open down pointing arrow.
@fdownarrow - a filled down pointing arrow.
@circle - an open circle.
@fcircle - a filled circle.
I plan to make this option more flexible in the near future.

10 Running ALSCRIPT

10.1 Basic Use

I recommend you read through this section, then scan the commands in Section
15.1 to get a feel for what ALSCRIPT can do.
See Section 15.8for alternative methods of invoking ALSCRIPT. In this section,
the interactive method is described. The QUICK START method shown in Section

9

15.8 is useful to format a sequence alignment quickly using standard pointsize
and shading.
ALSCRIPT is designed to work with AMPS block file format multiple alignments.
If you have a multiple alignment generated by CLUSTAL V or the GCG package,
then it must be translated to AMPS block file format.
To translate a GCG .MSF file: Type: msf2blc. To translate a CLUSTAL PIR
format file, or any PIR format file: clus2blc.
Both programs prompt for the name of an input file, and an output block file name.
A good convention to follow is to name all blockfiles with the extension ".blc".
To run ALSCRIPT simply type:
alscript
you will then be prompted for the name of the ALSCRIPT command file. Having
typed the filename, the commands will be executed as you have specified.
A Simple Command File (example.als)
The file example.blc contains a small multiple sequence alignment. The following
ALSCRIPT command file will convert this into a PostScript alignment file in 12
point Helvetica.

#Comments in ALSCRIPT command files start with a #
#
#Commands are free format - separated by blank, tab or comma characters
#
BLOCK_FILE example.blc #define the block file to format
OUTPUT_FILE example.ps #where to put the result
LANDSCAPE #landscape paper orientation
POINTSIZE 12 #12 point default pointsize
DEFINE_FONT 0 Helvetica DEFAULT #set font 0 to be Helvetica
SETUP #Tell the program to get on with it.

Now try changing the POINTSIZE value to 5 ALSCRIPT will re-format the
alignment to make best use of the available paper.
These are all STEP 1 commands - they refer to overall layout, and system settings
- for example, the paper size or maximum sequence length. Other commonly
used STEP 1 commands are IDENT WIDTH which reserves more or less width
for the sequence identifier codes, NUMBER SEQS which adds a number to each
sequence and LINE WIDTH FACTOR which allows the thickness of all boxing
lines to be adjusted. See Section 15.1 for details of these and all other STEP 1
commands.

10

The simple example outlined above can be modified with a variety of STEP 2
commands.
for example file example2.als:

FILE example2.als
#
#Commands are free format - separated by blank, tab or comma characters
#
BLOCK_FILE example.blc #define the block file to format
OUTPUT_FILE example2.ps #where to put the result
LANDSCAPE #landscape paper orientation
POINTSIZE 12 #12 point default pointsize
DEFINE_FONT 0 Helvetica DEFAULT #set font 0 to be Helvetica
DEFINE_FONT 1 Helvetica REL 0.5 #set font 1 to be half sized
DEFINE_FONT 3 Helvetica-Bold DEFAULT #set font 3 to be Bold Helvetica
DEFINE_FONT 4 Times-BoldItalic DEFAULT #font 4 is Times-
BoldItalic
NUMBER_SEQS #Number the sequences at left hand side
SETUP #Tell the program to get on with it.
#
#step 2 commands come after the SETUP command
#
#Here are some examples...
#
SURROUND_CHARS GP ALL #draw lines around all G and P
SHADE_CHARS ILVW ALL 0.6 #shade all I L V and W with value 0.6
BOX_REGION 1 1 2 20 0.8 #rectangular box from positions 1 to 2 of se-
quences 1 to 20
FONT_CHARS C ALL 3 #Use font 3 (BOLD Helvetica) for C characters
ID_FONT ALL 1 #set identifiers in font 1

There are many possible ways of combining these commands and the others shown
in Section 15.1 . In general, if you apply multiple commands to the same residue,
the effect of the last applied command persists where there would otherwise be
a conflict. Thus the intersection of two overlapping SHADed regions would be
shaded according to the second SHADE command, not some mixture of the two.

11

Similarly for FONT commands. BOX and SURROUND commands behave in the
opposite sense, all BOXing and SURROUNDing persists regardless of how many
commands you issue. This makes it possible for example, to SURROUND two
different sets of residues as follows:

SURROUND_CHARS DE ALL
SURROUND_CHARS DEHKR ALL

This would result in D and E characters being partitioned from the rest as well as
D E H K R characters (see Example output).

10.2 More complex effects - Text Lines, and Masks

Text, lines and masking are meant to be used to annotate the multiple alignment.
The TEXT command allows any piece of text to be located anywhere on the
alignment. Clearly, however it makes little sense to superimpose the text over
the alignment though this can be done! Accordingly, you must first make a space
to put the text in. Usually, this will be a few lines below the multiple sequence
alignment, but you may want to add text at the top, or somewhere in between two
sequences. You can make space in two ways. Either by editing the block-file to
introduce "dummy" sequences at the locations you want, or by making use of the
ADD SEQ command.
The ADD SEQ command has two arguments, the sequence after which you want
further sequences to be added, and how many blank sequences you need. Thus, we
can reserve space for 5 lines of text underneath a 10 sequence multiple alignment
with the following command.
ADD SEQ 10 5
we can then put text below the alignment at the 20th residue.
TEXT 20 13 "Active Site His"
or any other position.
Similarly, we could draw a vertical line to point out which residue we mean
LINE LEFT 20 13 11
And change the font of the text to number 7 (whatever that has been set to):
FONT RESIDUE 20 13 7
You can have multiple ADD SEQ commands, but they must occur in sequence
order. Thus:

12

ADD_SEQ 0 5
ADD_SEQ 5 12

is legal. But

ADD_SEQ 5 12
ADD_SEQ 0 5

Is NOT!! NO CHECKING IS performed by the program for this error - so beware!
Note that add seq commands refer to the actual sequence number as implied by
the block file, not the number after applying the add seq command. Thus, for
a four sequence block file, if you want to add space for three sequences before
sequence 1 and two sequences after sequence 3, the commands would be:

ADD_SEQ 0 3
ADD_SEQ 3 2

Text added with the TEXT command will not be split across page breaks, so you
may in some circumstances need to fiddle a little with the location/pointsize for
the text to get the desired result.
Masking is a technique for drawing irregular shaped outlines, or shaded regions -
this should not be confused with the MASK family of commands described below.
For example a histogram can be added to the bottom of an alignment by first
defining some dummy sequences in the block-file that have letters building up the
shape of the histogram, then using the SURROUND CHARS or SHADE CHARS
commands together with the SUB CHARS command to produce the desired effect.
An example of this operation being used to show frequencies of secondary structure
predictions is shown in example1.als and in the Protein Engineering paper.

11 Using Colour

Version 1.4 includes commands to allow the independent colouring of characters,
or their backgrounds. Colours are defined in a similar manner to fonts using the
DEFINE COLOUR command (American spelling also allowed). For example:
DEFINE COLOUR 7 1 0 0
defines colour number 7 to be red - see Section 15.1 for full details of this
command. Colours 99 and 100 are pre-defined to white and black. ALSCRIPT
assumes the paper colour is white.

13

The command to colour the text of a character or text string is:
CCOL CHARS
the command to colour the background of a character is
SCOL CHARS
both have similar syntax to the FONT CHARS command.
COLOUR REGION and COLOUR RES have similar syntax to SHADE REGION
and SHADE RES.
An example command file that uses colour is shown in example3.als.

12 The MASK command family

The idea behind the MASK command is to build up a set of character positions
that will subsequently be boxed, shaded, set in a particular font, etc. For example,
lets say we want to box the most frequently occuring character at each position in
an alignment.
The command
mask SETUP
tells ALSCRIPT to prepare a mask.
mask FRE ALL
specifies that the most frequently occuring character at each position in the align-
ment will be masked. This command can be restricted to a region of the alignment
using: mask FRE sx sy ex ey, where sx etc define the region in the same way as
for font region and other commands.
mask BOX ALL
Tells ALSCRIPT to create the boxing lines that will separate the masked characters
from non-masked characters - this command may also be restricted to a region of
the alignment.
The mask can be reset for re-use using the command:
mask RESET
Two further commands define which characters can be used when calculating the
mask. This allows gap-characters, or other amino acids to be excluded from the
calculation to avoid unwanted boxing.
mask LEGAL "AVLI"
defines the AVL and I as the only characters that will be used when calculating the
mask.
mask ILLEGAL ".- "

14

defines .- and as characters that will not be used when calculating the mask.
NOTE: the blank character " " cannot be defined in this way. To avoid boxing "
" characters substitute blanks for something else (using SUB CHARS), calculate
the mask, then substitute back.

12.1 Summary of mask commands

mask SETUP # Prepares for masking
mask LEGAL <qstring> # defines characters to include in ID or FRE calcs -
optional.
mask ILLEGAL <qstring> # defines characters to exclude in ID or FRE calcs -
optional.
mask ID ALL N # Calculates a mask that flags the character that occurs at least N
times at a position. The word ALL can be substituted by four numbers that define
a region of the alignment.
mask FRE ALL # calculates a mask that flags the most frequently occuring amino
acid at each position. ALL may be replaced by four numbers defining a region of
the alignment.
Multiple mask FRE or mask ID commands may be applied, using different LEGAL
and ILLEGAL character definitions. In this way more complex effects can be built
up.
The mask command also allows characters that are identical to one sequence to be
masked.
mask AGREE ALL N
will mask all positions that are identical to the Nth sequence. Thus, for sequences
that are very similar to a newly sequenced sequence, all characters identical to the
new sequence can be boxed or shaded, or set in a different font or colour etc...
mask NOT ALL
allows the mask to be inverted. Thus, all positions that are NOT in the mask
now form the mask. So, having done a mask AGREE, a mask NOT will allow
the positions that are not identical to the selected sequence to be highlighted or
substituted.
mask SUB ALL <char>
substitutes all characters in the mask with the character <char>.
mask REGION ALL applies a mask to all residues in the defined region.
The following effects can now be applied to the masked characters:
mask BOX ALL # boxes the masked residues - ie surrounds them by lines.

15

mask SHADE ALL <grey> # shades the masked residues by grey value.
mask FONT ALL<fontnum> # Uses font fontnum to output the masked residues.
mask INVERSE ALL # Inverts the masked characters - ie outputs them in white.
mask CCOL ALL <colnum> # outputs the masked characters in the defined
colour.
mask SCOL ALL <colnum> # outputs the backgrounds of the masked characters
in the defined colour.
In all commands, the word ALL can be replaced by four numbers defining the
region to which the command is applied.
mask RESET # resets the entire mask for re-use

13 Printing ALSCRIPT Files

ALSCRIPT produces files in PostScript which may be printed on a PostScript
printer (e.g. an Apple LaserWriter). If you don’t have a PostScript printer, then
you may still be able to use ALSCRIPT if you get hold of the GhostScript software.
This is a free package that interprets PostScript commands and can produce output
on a large number of different types of printer. GhostScript runs on most hardware
types (including PCs) and can also display output to the screen. The package can be
obtained from many different sites on the Internet (In the UK try src.doc.ic.ac.uk).
The actual command you need to type to send a PostScript file to the printer will
depend on your system. Consult your system manager for help.
Be warned, ALSCRIPT can create extremely large PostScript files if lots of boxing
and shading is done on big alignments. On older printers such output may take a
long time to process.

14 Conclusion

ALSCRIPT provides a powerful set of formatting and editing commands specific-
ally tailored for multiple sequence alignments. It is best used in conjunction with
a PostScript previewer such as Sun’s PageView or GhostView since this allows
the effect of changing a command to be seen quickly. In the absence of such a
tool, simpler effects can be tested out without destroying too many trees in the
Laser Printer!

16

Like most programs, ALSCRIPT is evolving as I find new problems to display, so
if you have any suggestions - I shall endeavour to include them in a later version.

15 Appendices

15.1 ALSCRIPT Command Summary

WARNING: Very little error checking is performed on command input. If you
give the wrong number of arguments to a command, then unexpected things may
happen, or the program will crash very inelegantly. I hope to fix this in the next
version of the program, in the meantime, make sure you give the correct number
of arguments to each command.
All commands up to the first space character may be entered in UPPER or lower
case or MiXEd case. Qualifiers for commands (e.g. REL) must be written in
UPPER case.
Command Reference:

<int> = enter an integer (e.g. 240)
<float> = enter a floating point number (e.g. 0.45)
<string> = enter a string (e.g. ARNDql)
<qstring> = enter a quoted string (e.g. "Active Site")
<char> = enter a single character.

15.1.1 STEP 1 COMMANDS

These all refer to either system settings - e.g. the maximum allowed sequence
length, or to general page layout features. e.g. the longest and shortest side of the
paper on which you are plotting.

15.1.2 REQUIRED STEP 1 COMMANDS

BLOCK FILE <string>
Gives the name of the file that contains the multiple sequence alignment to be
formatted. File names should be fully qualified i.e. not relative to the current
directory. If no block file command is given, ALSCRIPT will expect to read the
block file from standard input.
OUTPUT FILE <string>

17

Defines the output file name. This command should be near the beginning of the
command list. e.g. OUTPUT FILE Figure1.ps
You MUST define an output file unless the -p option (See Section 15.8) is used.
DEFINE FONT <int><string> (<int>/DEFAULT)/(REL <float>)
Defines a font to use later: e.g.

DEFINE_FONT 0 Helvetica 10
DEFINE_FONT 2 Times-Roman 2

defines font number 0 to be 10 point Helvetica, and font number 2 to be 2 point
Times-Roman. Font 0 is always used as the default font. You MUST define at
least the font 0 font.
DEFINE FONT 3 Times-Roman DEFAULT
sets font 3 to be Times-Roman at whatever the default pointsize is as set by the
POINTSIZE command.
DEFINE FONT 4 Helvetica REL 0.5
sets font 4 to be helvetica at half the default pointsize.
NOTE: Font names must be written exactly as shown in Section 15.3 .
SETUP
Signals the end of the STEP 1 commands.

15.1.3 OPTIONAL STEP 1 COMMANDS

ADD SEQ <int> <int>
Allows extra sequence positions to be created in an existing alignment. This
permits additional annotations to be interspaced either above, below, or anywhere
in the middle of an alignment. For example:
ADD SEQ 0 10
would create an additional 10 sequences - all set to the blank character before the
first sequence in the block file that has been read in.
ADD SEQ 3 1
would add an extra sequence after sequence 3.
IMPORTANT: If you use the ADD SEQ facility to add sequences anywhere
except after the last sequence, then remember that the sequence numbers will
alter. All formatting commands that follow this command must use the new
sequence numbering. Thus in the first example:
ADD SEQ 0 10

18

what was sequence number 1 becomes sequence 11. Sequences 1-10 are the
new blank sequences to be used for annotation. Note that the sequence numbers
only change for commands AFTER the SETUP command, thus, multiple add seq
commands refer to the sequence number as implied by the block file.
POINTSIZE <int>
Defines the pointsize to be used to scale the plot and space the characters. Default
is 10 point.
NUMBER SEQS
If present, then the sequence number is output with the identifier code. This is
useful for finding the coordinates of residues to box or otherwise highlight.
LANDSCAPE
Specifies that alignments will be plotted with the longest paper axis horizontal.
(Can get longer alignments on a page this way).
PORTRAIT
Specifies that alignments will be plotted with the longest paper axis vertical (can
get more sequences on a page this way).
IDENT WIDTH <int>
Units are characters.
Reserves <int> characters at left of every page for plotting identifiers. Note that
not all this space need be used, if a smaller pointsize is used to plot out the identifier
codes, than is used for the main alignment.
LINE WIDTH FACTOR <float>
Value greater than 0 that scales the default line width. The linewidth is obtained
by multiplying the pointsize by this factor.
X SPACE FACTOR <float>
Y SPACE FACTOR <float>
This determines the spacing between adjacent residues in the X and Y directions.
The spacing is calculated as: POINTSIZE + POINTSIZE * X SPACE FACTOR
or POINTSIZE + POINTSIZE * Y SPACE FACTOR as appropriate. Defaults are
0.2 and 0.0 respectively.
X SHIFT FACTOR <float>
Y SHIFT FACTOR <float>
These determine the shift relative to the residue drawing position that is given to
the boxing lines. The shift is calculated as follows
(POINTSIZE + POINTSIZE * X SPACE FACTOR) * X SHIFT FACTOR sim-
ilarly for Y SHIFT FACTOR.
The defaults are 0.3 and 0.0 respectively.

19

Fiddling with the X SPACE/SHIFT values is useful to fine tune the appearance of
the alignment.
MAX INPUT LEN <int>
Units are characters. Defines the maximum number of characters possible in the
input line length. This must be greater than the maximum number of sequences
(MAX NSEQ).
e.g. MAX INPUT LEN 600
Increases the default value of 500 characters to 600 characters.
MAX NSEQ <int>
Units are characters. Defines the maximum number of sequences that may be read
by the program. This parameter has a large default (500). You may need to reduce
it on computers with small memories.
MAX ILEN <int>
Units are characters. The maximum length allowed for a sequence identifier code.
MAX SEQ LEN <int>
Defines the maximum length allowed for a sequence alignment - this may need to
be reduced from the 8000 default value on smaller computers.
X OFFSET <int> Units of points (1/72 inch).
Defines the offset along the X-axis that the alignments will be shifted prior to
printing. Fiddle with this value to get a nice offset from the bottom left hand
corner of the page if your page size is not A4.
Y OFFSET <int> Units of points (1/72 inch).
As for X OFFSET, only Y axis.
MAX SIDE <int> Units of inches.
Defines the length of the longest side of the printer page.
MIN SIDE <int> Units of inches.
Defines the length of the shortest side of the printer page.
VERTICAL SPACING <int>
Defines the vertical spacing in character units between blocks of sequences when
more than one block will fit on a page - default is 0.
DEFINE COLOUR <int> <float> <float> <float>
DEFINE COLOR
Defines a colour - the first number is a number by which the colour will be referred.
The following three numbers are the intensities of red, green and blue respectively.
Thus:
DEFINE COLOUR 1 0 0.2 0.8

20

sets colour number 1 to be a colour with no red, 0.2 green and 0.8 blue. The
exact appearance of this colour will depend on the output device. If you find
suitable combinations of colours for your printer, then please let me know and I
shall distribute your suggestions with the program.
DO TICKS
If present, then tick marks are drawn below the numbers at the top of the page.
Otherwise no ticks are shown.
NUMBER INT <int>
Specifies the interval for writing residue position numbers. Default is 10
NO NUMBERS
Switches all residue numbering off.

15.1.4 STEP 2 COMMANDS

All these are optional formatting commands.
IMPORTANT PLEASE READ THIS NOTE:
For those commands that accept region definitions (e.g. SURROUND CHARS) it
is easiest to think of the region being defined in terms of X and Y coordinates,where
X is the sequence residue coordinate and Y is the sequence number coordinate.
Thus 3 7 means the 3rd residue in sequence 7. 3 7 12 42 means the rectangular
box bounded by residue 3 of sequence 7 and residue 12 of sequence 42.
SURROUND CHARS <string> ALL
Draw lines round, but not between the characters that are in the string. e.g.
SURROUND CHARS GP ALL
will draw lines round all G and P characters in the alignment, but not between
adjacent G and P characters.
SURROUND CHARS <string> <int> <int> <int> <int>
Similar command, but the surrounding is restricted to the region defined by the
four integers.
e.g.
SURROUND CHARS ILVW 3 12 7 32
would surround ILVW characters that occur in the region defined from residue
positions 3-7 of sequences 12 to 32.
SHADE CHARS <string> ALL <float>
Shade all characters in the <string> by the grey value given by <float>. e.g.
SHADE CHARS GP ALL 0.5
would shade all G and P characters in the alignment by the grey value 0.5.

21

SHADE CHARS <string> <int> <int> <int> <int> <float>
restricts the shading to the region defined by the four integers. Thus
SHADE CHARS ILVW 3 12 7 32 0.7
would shade I L V and W characters from residues 3-7 of sequences 12-32 inclusive
with a grey value of 0.7.
FONT CHARS <string> ALL <int>
e.g.
FONT CHARS GP ALL 7
would use font 7 to write out all G and P characters. Font 7 MUST have been
defined using the DEFINE FONT commands above.
FONT CHARS <string> <int> <int> <int> <int> <int>
Similar to previous command, but restricts the effect to the region defined by
the first four integers. The font must have been defined by the DEFINE FONT
command.
e.g.
FONT CHARS ILVW 3 45 9 70 7
Would set the font to 7 for I L V and W characters for residues 3-9 of sequences 45-
70 inclusive. The font must have been defined by the DEFINE FONT command.
FONT REGION <int><int> <int> <int> <int>
Define the font to use throughout the region specified by the first four integers.
e.g.
FONT REGION 3 12 20 40 10
Use font 10 for residues from residues 3-20 of sequences 12-40. The font must
have been defined using the DEFINE FONT command.
FONT RESIDUE <int> <int> <int>
Set the font for use with a single residue position - most useful when used with
the TEXT command.
e.g.
FONT RESIDUE 3 7 2
Use font 2 for residue 3 of sequence 7. Font 2 must have been defined using the
DEFINE FONT command.
LINE <string> <int> <int> <int>
There are four commands of this type for drawing horizontal or vertical lines on
the alignment.
LINE LEFT <int> <int> <int>
Draw a line to the left of the character positions indicated.
e.g.

22

LINE LEFT 3 12 24
Draw a vertical line starting at residue 3 of sequence 12 and ending at residue 3 of
sequence 24.
LINE TOP 3 12 24
Draw a horizontal line above the character positions from residue 3 of sequence
12 to residue 24 of sequence 12.
Similar commands are:
LINE BOTTOM <int><int><int>Draw a line at bottom of character position.
LINE RIGHT <int> <int> <int> Draw a line at right of character position.
BOX REGION <int> <int> <int><int>
Draw a box around the region indicated by the four integers.
e.g.
BOX REGION 2 5 30 7
Would box from residue 2 of sequence 5 to residue 30 of sequence 7.
SHADE REGION <int><int> <int> <int> <float>
Shade the region indicated by the integers with the grey value shown by the float.
e.g.
SHADE REGION 30 40 35 46 0.2
Would shade from residue 30-35 of sequences 40-46 with a grey value of 0.2.
SHADE RES <int> <int> <float>
Shade just one amino acid with the grey value.
e.g.
SHADE RES 3 4 0.7
Shades residue 3 of sequence 7. (Note: this can also be achieved with the
SHADE REGION command, but requires 2 extra numbers)
TEXT <int> <int> <qstring>
Place the text string at the location indicated.
e.g.
TEXT 30 70 "Active Site His"
would put the text Active Site His starting at position 30 of sequence 70. (Use
FONT RESIDUE or FONT REGION commands to set the font of the text). Text
added with the TEXT command will not be split across page breaks, so you may
in some circumstances need to fiddle a little with the location/pointsize for the text
to get the desired result.
ID FONT ALL <int>
Set the font for all identifier codes to the font number shown by <int>. e.g.
ID FONT ALL 3

23

Would set all the identifier codes to font 3.
ID FONT <int> <int>
Set the font for a specific identifier to font number. e.g.
ID FONT 12 4
Use font 4 for the identifer of sequence 12, default font for all other identifiers.
SUB CHARS ALL <char> <char>
Substitute the characters indicated.
e.g.
SUB CHARS ALL + *
would change all occurences of + to * in the alignment.
SUB CHARS <int> <int> <int> <int> <char> <char>
restrict the substitution to the region shown.
e.g.
SUB CHARS 1 1 7 8 % *
would substitute * for % from residue 1-7 of sequences 1-8. NOTE: To substitute
for or with the space character use the word SPACE. e.g. to change all space
characters to -.
SUB CHARS ALL SPACE -
SUB ID <int> <qstring>
Replace the numbered identifier by the string. e.g.
SUB ID 34 "Predicted Secondary Structure"
would replace whatever the identifier of sequence 34 was, by the text shown. This
is useful when used in conjunction with the ADD SEQ command shown under
the STEP 1 commands.
INVERSE CHARS <string> ALL/Range (similar syntax to FONT CHARS but
no font number)
Print the selected characters in white. This clearly will only work if you first use
the SHADE CHARS command to shade the characters with something other than
white.
CCOL CHARS <string> ALL <int>
Colour all characters in the <string> by the colour defined by <int>.
e.g.
CCOL CHARS GP ALL 12
would colour all G and P characters in the alignment by the colour 12. This colour
MUST have been defined by the DEFINE COLOUR command.
CCOL CHARS <string> <int> <int> <int> <int> <int>
restricts the colouring to the region defined by the four integers. Thus

24

CCOL CHARS ILVW 3 12 7 32 7
would colour I L V and W characters from residues 3-7 of sequences 12-32
inclusive with the colour 7.
SCOL CHARS: This has identical syntax to SCOL CHARS, but colours the back-
ground of the character, rather than the letter itself.
COLOUR REGION <int> <int> <int> <int> <int>
COLOR REGION
Colour the region indicated by the integers with the colour number given as the
last number.
e.g.
COLOUR REGION 30 40 35 46 2
Would colour from residue 30-35 of sequences 40-46 with the colour 2.
COLOUR RES <int> <int> <int>
Colour just one amino acid with the defined colour.
e.g.
COLOUR RES 3 4 7
Colours residue 3 of sequence 7. (Note: this can also be achieved with the
COLOUR REGION command, but requires 2 extra numbers)

15.2 AMPS Block file format

The first part of a block-file contains the identifier codes of the sequences that are
to follow. Each code is prefixed by the > symbol, codes must not contain spaces.
e.g.

>HAHU
>Trypsin
>A0046
>Seq1

etc.
ALSCRIPT counts the number of > symbols in the beginning of the file until a
* symbol is found. The * signals the beginning of the multiple alignment which
is stored VERTICALLY, thus columns are individual sequences, whilst rows are
aligned positions. The * symbol must lie over the first sequence. A further star in
the same column signals the end of the alignment. ALSCRIPT uses the number

25

of > symbols at the beginning of the file to work out how many columns to read
from the * position. It is therefore important that the only > symbols in the file
are those that define the identifiers, and the only * symbols are those defining the
start and end of the multiple alignment. The block file can contain additional text,
providing that there are no more > or * symbols in the file than those used to
define the identifiers or alignment start and end.
A simple, small block-file is shown here.

>Seq_1
>A0231
>HAHU
>Four_Alpha
>Globin
>GLobin_C
*
ARNDLQ
AAAAAA
PPPPPP
PP PPP
WW WWW
LLLLLL
IIVVLL
*

15.3 PostScript Fonts

Times-Roman,
Times-Italic,
Times-Bold,
Times-BoldItalic,
Helvetica,
Helvetica-Oblique,
Helvetica-Bold,
Helvetica-BoldOblique,
Courier,
Courier-Oblique,
Courier-Bold

26

Courier-BoldOblique,
AvantGarde-Book,
AvantGarde-BookOblique,
AvantGarde-Demi,
AvantGarde-DemiOblique,
Bookman-Demi,
Bookman-DemiItalic,
Bookman-Light,
Bookman-LightItalic,
Helvetica-Narrow,
Helvetica-Narrow-Bold,
Helvetica-Narrow-BoldOblique,
Helvetica-Narrow-Oblique,
NewCenturySchblk-Roman,
NewCenturySchlbk-Bold,
NewCenturySchblk-Italic,
NewCenturySchblk-BoldItalic,
Palatino-Roman,
Palatino-Bold,
Palatino-Italic,
Palatino-BoldItalic
ZapfChancery-MediumItalic.
Symbol

15.4 386 DOS installation

IMPORTANT - The programs on this disk will ONLY WORK on a PC with a 386
or better processor. See the Technical Notes section for details of why.
Directions:

1. Create a directory on your hard disk. e.g. mkdir ALSCRIPT.

2. Copy the Contents of the floppy disk into this directory.

e.g. copy a:*.* c:\alscript.

3. Edit your AUTOEXEC.BAT file and add

27

C:\ALSCRIPT to your path.

4. Edit your AUTOEXEC.BAT file and add the following two lines. set
DOS4GVM=@ALSCRIPT.VMC set DOS4G=quiet

The first line is an instruction to read instructions from the file ALSCRIPT.VMC.
This sets up a permanent swap file on your hard disk. By default, the swap file
is about 12MBytes in size. If you do not have this much free space on your disk,
then edit the ALSCRIPT.VMC file to reduce the swap file size, or alternatively,
do not put this line in your autoexec.bat.
The programs will run without this swap file, but you will be limited in the size of
alignment you can process by the amount of RAM you have installed. I have only
tested this program on a 486/33 with 8MBytes RAM and a 386/33 with 4MBytes
so I do not know the practical limitations of machines with smaller memories.
Any feedback would be appreciated.
5. Type AUTOEXEC.BAT to initialise the changes, or better still, reset the
computer.
6. You should now be able to run all three programs in the package from anywhere
on your disk. msf2blc, clus2blc and alscript. If you get memory allocation errors
when you try to run alscript, then use the MAX NSEQ and MAX SEQ LEN
commands to reduce the default limits. If the program still won’t run, then think
about buying some more memory!!
The programs msf2blc and clus2blc should run OK, but if you try to process
alignments that are too large for your computer, you may get a "malloc error" which
will stop the program. If this happens and you are not using the virtual memory
option discussed above, then try adding the line set DOS4GVM=@filename to
your autoexec.bat file. If you don’t have enough disk space to do this, then buy a
bigger disk, or more memory.

15.5 TECHNICAL NOTES

The executables included in this package were compiled with the WATCOM C
compiler. This is a full 32 bit compiler that makes good use of the 386 processor
and does not work on the 16 bit 286. It also has the advantage of allowing the
flat memory model to be used. In practice this means that porting programs like
alscript from Unix computers like the Sun, is straightforward. In order to access
the memory of the computer in this way, an extra program called a dos extender is

28

required - this is called DOS4GW.EXE. DOS4GW is automatically invoked every
time you run one of the programs and is responsible for managing the memory
and creating the swap file discussed above.

15.6 Unix Installation

ALSCRIPT is distributed with executables for Sun (SunOS 4.1.3), Silicon Graph-
ics (IRIX 5.3), DEC ALPHA OSF/1 and Sun Solaris (2.4). The executables are
stored in the subdirectories bin/sun, bin/sgi, bin/osf and bin/sol. If these are OK
for your system, then just add the apporpriate directory to your path, or put links
to /usr/local/bin or somewhere that is on all users paths.
The source code for ALSCRIPT is contained in a directory hierarchy. The top
directory contains a README file and the BUILD script. Subdirectories are:
examples which contains example command and alignment files, doc which con-
tains LATEXand PostScript copies of the manual - a subdirectory of this contains
an HTML version of the manual, and src which contains the source code and
Makefiles for the package. There may also be a directory called bin. If present
this will contain subdirectories with executables for the programs in the package.
Makefiles to build alscript, msf2blc, clus2blc and alsnum are included in the src
directory. Versions for Sun (acc compiler .sun), Silicon Graphics (.sgi), DEC
OSF/1 (.osf) are included.
There is a utility csh script called BUILD. Simply type ./BUILD sun to compile
alscript on the Sun, ./BUILD sgi for Silicon Graphics or BUILD gcc for use with
gcc compiler. See instructions in the file BUILD. The BUILD script will create
a /bin directory and subdirecotry if not already present. You can create makefiles
for different computers and the BUILD script should still function.

15.7 VAX/VMS Installation

The standard VAX C compiler is not ANSI. Accordingly, ALSCRIPT will require
changes to the source code to compile on a VAX.
The DEC C++ compiler works OK for alscript. Alscript will also compile on Dec
ALPHA under OpenVMS. A descrip.mms file is included for this purpose.
WARNING: I’ve not tested Version 2.0 of ALSCRIPT on VMS

29

15.8 Alternative ways of invoking ALSCRIPT

The documentation above describes the interactive mode of running ALSCRIPT.
However, it may be more convenient to run the program as a pipe under Unix or
MS-DOS. Examples are shown here.
ALSCRIPT is a program for producing pretty versions of multiple sequence alig-
ments. ALSCRIPT will also format single sequences. A full description of the
program is given in the file "alscript.doc".
Ways of running alscript:

1. Interactive mode: just type alscript. You will be prompted for a command
file name. The command file will define the AMPS blocfile, and name of
the file to store the PostScript output - see alscript.doc for details.

2. alscript <command file> has same effect as 1, But does not prompt for the
command file e.g. alscript example1.als

3. alscript -q < <blocfile> > <PostScript> Quick mode - uses default com-
mands, reads alignment from stdin, writes PostScript to stdout. This mode
creates a command file called ALPSQ.COM.

e.g. alscript -q < example1.blc > example1.ps

4. alscript -f <command file> Similar effect to 2.

5. alscript -f <command file> -s Silent operation: No messages are written
to stderr, unless fatal. Silent operation may be toggled by the silent mode
command in the command file.

6. alscript -f<command file> -p<<blocfile>><PostScript>Make alscript
work like a pipe - blocfile is read from stdin, postscript is written to stdout.
Messages are written to stderr. To supress messages include the -s flag too

e.g. alscript -f example1.als -p -s < example1.blc > example1.ps

Using alscript as a pipe has the advantage of allowing the blocfile to be created on
the fly by the programs msf2blc or clus2blc. For example if we have a GCG .msf
file called "pileup.msf" we can run alscript with default shading/fonts and send the
results straight to the PostScript printer "lpr" as follows:
msf2blc -q <pileup.msf | alscript -q -s | lpr

30

15.9 Program Crashes and Known Bugs

We’ve used ALSCRIPT on Sun Workstations and Silicon Graphics for some time,
with very large alignments and command files with thousands of commands. All
seems to work OK, the program has not crashed on us at all!!
However, the command interpreter in ALSCRIPT is very simple and the program
will crash if you give any command the wrong number of arguments (e.g. leaving
out the shade value in a shade chars command).
If you do make the program crash, have checked all the documentation and your
numbers, and the program still crashes. Then send me the command file and block
file that causes the crash and I will try to investigate.
Suggestions for improvements to the program are always welcome.

15.10 Wish List for next version!!

A command interpreter that does more error checking will be included. Currently,
no checking is done to make sure that the correct number of arguments are given
to a command.
Sequences will be able to be given unique labels and region commands refer to
these labels or ranges of labels. This will permit a sequence to be deleted or added
to the alignment without having to update the .als file.
The relative numbering option will be extended to allow numbering relative to
a position. e.g. 456+7 would be 7 residues after position 456. This will allow
annotation of positions that may be in insertions relative to the reference sequence.
Special TEXT commands will be extended to allow alternative shapes to be drawn
and scaled in various ways.
Tree drawing and generalised graphics. An option to draw arbitrary lines on
an alignment will be added. This will permit line graphics to be added to an
alignment. The initial reason for this will be to show dendrograms (trees) alongside
the alignment, but simple line graphs could also be plotted under the alignment.
Fiddle factors will be introduced to allow fine positioning of individual characters.
For example, if you like your “I” characters to be centred rather than left justified,
this will be possible.
In single page mode, it will be possible to add arbitrary text to an alignment for
final annotation, e.g. titles etc.
Variable height/width sequence lines will be permitted (maybe).

31

15.11 Acknowledgements

I thank all those who have emailed me with suggestions for improvements to
alscript. I’ve tried to include some of these in the current distribution (e.g. screen-
ing).

15.12 References

1. Barton, G. J. (1993),
"ALSCRIPT A tool to format multiple sequence alignments",
Protein Engineering, Volume 6, No. 1, pp.37-40.

2. Barton, G. J. (1990),
"Protein Multiple Sequence Alignment and Flexible Pat-

tern Matching",
Methods in Enzymology,

183,403-428.

3. Barton, G. J. and Sternberg, M. J. E. (1987),
"A Strategy for the Rapid Multiple Alignment of Pro-

tein Sequences:
Confidence Levels From Tertiary Structure Comparisons",

Journal of Molecular Biology,
198,327-337

4. Higgins, D. G. and Sharp, P. M. (1989),
"Fast and sensitive multiple sequence alignments on a microcomputer",

CABIOS,
5,151--153

5. Devereux, J. Haeberli, P. Smithies, O. (1984),
"A comprehensive set of sequence analysis programs for the VAX",

Nucleic Acids Res.
12, 387-395

6. Livingstone, C. D. and Barton, G. J. (1993),

32

"Protein Sequence Alignments: A Strategy for the Hier-
archical analysis
of residue conservation"
Computer Applications in the Biosciences,
9, 745-756.

33

