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Abstract

Background

When analyzing protein sequences using sequence similarity searches, orthologous 

sequences (that diverged by speciation) are more reliable predictors of a new protein’s 

function than paralogous sequences (that diverged by gene duplication). The utility of 

phylogenetic information in high-throughput genome annotation (“phylogenomics”) 

is widely recognized, but existing approaches are either manual or not explicitly based 

on phylogenetic trees.

Results

Here we present RIO (Resampled Inference of Orthologs), a procedure for automated 

phylogenomics using explicit phylogenetic inference. RIO analyses are performed 

over bootstrap resampled phylogenetic trees to estimate the reliability of orthology 

assignments. We also introduce supplementary concepts that are helpful for functional 

inference. RIO has been implemented as Perl pipeline connecting several C and Java 

programs. It is available at [http://www.genetics.wustl.edu/eddy/forester/]. A web 

server is at [http://www.rio.wustl.edu/]. RIO was tested on the Arabidopsis thaliana

and Caenorhabditis elegans proteomes.

Conclusion

The RIO procedure is particularly useful for the automated detection of first 

representatives of novel protein subfamilies. We also describe how some orthologies 

can be misleading for functional inference.

Background

Accurate computational protein function analysis is an important way of extracting 

value from primary sequence data. Due to the large amount of data, automated 

systems seem unavoidable (at least for initial, prioritizing steps). Such efforts are 

complicated, for a variety of reasons. Many proteins belong to large families, as 

suggested by Dayhoff [1]. Such families are often composed of subfamilies related to 

each other by gene duplication events. For example, Ingram [2] showed that human α, 

β, and γ chains of hemoglobins are related to each other by gene duplications. Gene 

duplication allows one copy to assume a new biological role through mutation, while 



the other copy preserves the original functionality [3, 4]. Hence, subfamilies often 

differ in their biological functionality yet still exhibit a high degree of sequence 

similarity.

Other complications in functional analysis include: ignoring the multi-domain 

organization of proteins; error propagation caused by transfer of information from 

previously erroneously annotated sequences; insufficient masking of low complexity 

regions; and alternative splicing [5].

Typically, automated sequence function analysis relies on pairwise sequence 

similarity and programs such as BLAST [6] or FASTA [7]. Annotating a sequence by 

transferring annotation from its most similar sequence(s) tends to produce overly 

specific annotation. In contrast, analyses using profile search algorithms such as 

HMMER [http://hmmer.wustl.edu/] and Pfam [8] classify sequences too generally. 

They recognize that a query sequence belongs to a certain family (or, to be more 

precise, indicate which domain(s) the query is likely to contain), but do not 

subclassify the sequence. 

At least two scenarios can cause misleading predictions when using pairwise 

sequence similarity alone for annotation: (i) not having a known annotated 

representative of the correct subfamily because incomplete sequence databases and/or 

gene loss (Figure 1), and (ii) unequal rates of evolution (Figure 2). The case of trying 

to annotate the first (or only) representative of a novel subfamily is of particular 

interest. Pairwise similarity based methods alone cannot recognize that a new 

sequence does not belong in any currently known subfamily (e.g. “orphan” G-protein 

coupled receptors), because every sequence is most similar to something. In contrast, 

when constructing a phylogenetic tree, this case is easy to observe (as illustrated in 

Figure 1). A human annotator can use phylogenetic tree analysis to place a new 

sequence in the subfamily structure of a gene tree of known sequences. This approach 

was called “phylogenomics” by Eisen [9]. It would be desirable to automate this 

procedure, but the best automated methods for subfamily annotation, such as the 

COGs database [10], are clustering methods that do not directly use phylogenetic 

analysis.

It is infeasible to completely automate functional analysis, because it is impossible to 

precisely define what protein “function” means. However, a principle of 

phylogenomics is that orthologous sequences (that diverged by speciation) are more 

likely to conserve protein function than paralogous sequences (that diverged by gene 

duplication). Orthology and paralogy are well defined and can be inferred from gene 

and species trees. One useful and automatable phylogenomics approach would be as 

follows: if a novel sequence has orthologs, annotation can be transferred from them 

(as in best BLAST analysis); if there are no orthologs, the sequence is classified as 

just a family member (as in Pfam/InterPro analysis) and flagged as possibly the first 

representative of a novel subfamily. At the core of such approaches stands therefore 

the distinction between orthologs and paralogs, and hence the ability to discriminate 

between duplication and speciation events on a gene tree. Various efficient algorithms 

to infer gene duplications on a gene tree by comparing it to a species tree have been 

described (for example: by Eulenstein [11], and by Zhang [12]). We developed a 

simple algorithm (named SDI for Speciation Duplication Inference) that appears to 

solve this problem even more efficiently on realistic data sets, though it has an 

asymptotic worst-case running time that is less favorable [13].



In practice, phylogenetic trees are unreliable. Errors in trees will produce spurious 

inferred duplications. This is obviously problematic if duplications are to be used as 

indicators of potential functional changes. Therefore, instead of determining the 

orthologs of a query sequence on just one gene tree, inference could be performed 

over bootstrap resampled gene trees [14, 15] to estimate of the reliability of the 

assignments. Here we describe and test a procedure – RIO (for Resampled Inference 

of Orthologs) – which allows to perform such analyses in an automated fashion. We 

present results of using RIO to analyze a plant (A. thaliana [16]) and an animal (the 

nematode C. elegans [17]) proteome.

Algorithm

Definitions

Orthologs are defined as two genes that diverged by a speciation event. Paralogs are 

defined as two genes that diverged by a duplication event [18]. Other concepts 

derived from gene trees can be useful for functional prediction. We introduce and 

justify three such concepts (“super-orthologs”, “ultra-paralogs”, and “subtree-

neighbors”):

Careless use of orthology relationships without examining the tree itself can lead to 

incorrect annotations. In the example shown in Figure 3A, the human query sequence 

has two orthologous sequences in wheat. These two wheat sequences are related to 

each other by a gene duplication and one (or even both) of them might have 

undergone functional modification after their divergence. Given a procedure that gave 

a list of orthologues for the human gene query, such situations should be revealed by 

only partial (or complete absence of) agreement between the annotations of the wheat 

orthologs. Now consider the situation in Figure 3B. This is trickier, since in this case 

only one ortholog will be reported for the query sequence, but it will be just as 

dangerous to transfer annotation. We do not attempt to solve this problem (the 

solution is careful manual analysis of the gene tree) but an automated procedure can 

warn that this situation might be present. For this purpose we introduce the concept of 

“super-orthologs”:

Definition 1. Given a rooted gene tree with duplication or speciation assigned 

to each of its internal nodes, two sequences are super-orthologous if and only 

if each internal node on their connecting path represents a speciation event.

Hence, the query sequences in Figure 3 have no super-orthologs. In contrast, the rat, 

mouse, and wheat sequences in Figure 1A are super-orthologs pf the human query 

sequence. By definition, the super-orthologs of a given sequence are a subset of its 

orthologs.

Certain sequences underwent multiple recent duplications, resulting in large species 

specific sequence families, such as the C. elegans seven-transmembrane proteins 

acting as odorant and chemosensory receptors [19, 20]. For query sequences 

belonging to such sequence families, orthologs (if present) are less effective for 

predicting specific information. In these cases, paralogs of the same (sub) family 

might be more informative for functional prediction (as long as the duplications 

indeed happened “late” in evolutionary times). To formalize this, we introduce the 

concept of “ultra-paralogs”:



Definition 2. Given a rooted gene tree with duplication or speciation assigned 

to each of its internal nodes, two sequences are ultra-paralogous if and only if 

the smallest subtree containing them both contains only internal nodes 

representing duplications.

Figure 4 illustrates the concept of ultra-paralogs. It follows from definition 2 that two 

ultra-paralogous sequences must occur in the same species.

Often, researchers construct a gene tree and then informally use “subtrees” (clades) to 

make inferences about sequences (without regard to duplications and speciations). We 

introduce this concept into our procedure as well, formalized as “subtree-neighbors” 

(illustrated in Figure 5):

Definition 3. Given a completely binary and rooted gene tree, the k-subtree-

neighbors of a sequence q are defined as all sequences derived from the k-

level parent node of q, except q itself (the level of q itself is 0, q’s parent is 1, 

and so forth). 

Subtree-neighbors can be useful if there is (partial) agreement among their 

annotations (for example: if the subtree-neighbors of a query are NAD

+

-dependent 

isocitrate dehydrogenase and NADP

+

-dependent isocitrate dehydrogenase we can 

suppose that the query is likely to be a isocitrate dehydrogenase, but it is not possible 

to determine whether it is dependent on NAD

+

 or NADP

+

). If the subtree-neighbors 

lack any agreement in their annotations a useful inference is not possible (see [9] for a 

more detailed discussion). Furthermore, orthologs that are not also subtree-neighbors 

can be misleading (for a more detailed discussion of this, see below, and see Figures 

10 and 11 for examples).

The RIO procedure

This basic RIO procedure is as follows. For a simple example with only four 

bootstrap resamples, see Figure 6.

We use the Pfam protein family database [8] as a source of high quality curated 

multiple sequence alignments and profile HMMs (Hidden Markov Models, see [21]

for a review), as well as programs from the HMMER package 

[http://hmmer.wustl.edu/]. RIO can easily be adapted to work with different sources 

of alignments and different alignment programs. For tree reconstruction, the neighbor 

joining (NJ) algorithm [22] is used, since it is reasonably fast, can handle alignments 

of large numbers of sequences, and does not assume a molecular clock. NJ recreates 

the correct additive tree as long as the input distances are additive [23], and is 

effective even if additivity is only approximated [24]. 

Input: A query protein sequence Q with unknown function.

A curated multiple alignment A from the Pfam database for the protein 

family that Q belongs to (as determined by hmmpfam from the 

HMMER package).

A profile HMM H for the protein family that Q belongs to.



Output: A list (as in Figure 7) of proteins orthologous to Q, sorted according to 

a bootstrap confidence value (based on orthology, super-orthology, or 

subtree-neighborings).

Optional: A gene tree based on the multiple alignment A and the query 

Q annotated with orthology bootstrap confidence values for the query 

Q.

Procedure:

1. Query sequence Q is aligned to the existing alignment A (using hmmalign from 

the HMMER package and the Pfam profile HMM H).

2. The alignment is bootstrap resampled x times (usually, x = 100).

3. Maximum likelihood pairwise distance matrices are calculated for each of the x

multiple alignments using a model of amino acid substitution (for example, 

BLOSUM [25] or Dayhoff PAM [26]).

4. An unrooted phylogenetic tree is inferred for each of the x multiple alignments 

by neighbor joining [22], resulting in x gene trees. Each tree is rooted by a 

modified version of our SDI algorithm [13] that minimized the number of 

duplications postulated (this is discussed in more detail later).

5. For each of the x rooted gene trees: For each node it is inferred whether it 

represents a duplication or a speciation event by comparing the gene tree to a 

trusted species tree. 

6. For each sequence s in the gene tree (except Q): Count the number of gene trees 

where s is orthologous to Q (see Figure 4 for an illustration of steps 5. and 6.). 

Bootstrap confidence values for super-orthologies, ultra-paralogies and subtree-

neighbors are calculated analogously.

Precalculation of pairwise distances for increased time efficiency

The most time consuming step in the procedure described above is the calculation of 

pairwise distances. [The time complexity is O(xLN

2

), N being the number of 

sequences, L being their length,  and x being the number of bootstrap resamples. On 

an average Intel processor the wall clock time for 100 bootstrapped datasets of a 

typical Pfam multiple alignment is in the range of hours.]

Since the query sequence is aligned to stable Pfam alignments, it is possible to 

precalculate the pairwise distances for each alignment and store the results. Then, 

when RIO is being used to analyze a query sequence, only the distances of the query 

to each sequence in the Pfam alignment have to be calculated. This step becomes thus 

O(N) instead of O(N

2

).

To do this correctly, the aligned query sequence has to be bootstrap resampled in 

exactly the same way as was used for precalculating the pairwise distances of the 

Pfam alignment. For this purpose, bootstrap positions (e.g. which aligned columns 

from the Pfam alignment were chosen in a particular bootstrap sample) are saved to a 



file. With this file it is possible to bootstrap the new alignment of N+1 sequences 

(Pfam alignment plus query sequence) in precisely the same manner, so the NxN 

precalculated distances are valid for the (N+1)x(N+1) distance matrix. The alignment 

method must also guarantee that the original Pfam multiple alignment remains 

unchanged when the query sequence is aligned to it. This requires specially prepared 

Pfam full alignments and profile HMMs that are created with the HMMER software 

as follows: 

Input: Original Pfam full alignment A.

Output: “aln” file containing RIO-ready full alignment 

“hmm” file containing a RIO-ready profile HMM

“nbd” file containing pairwise distances

“bsp” file bootstrap positions file

“pwd” file containing pairwise distances for bootstrap resampled 

alignment

1. Remove sequences from species not in RIO’s master species tree from alignment 

A. If A does not contain enough sequences (<6), abort.

2. Run hmmbuild –o A’ on A, using the same options as were used to build the 

original Pfam HMM for A, resulting in alignment A’. (HMMER’s construction 

procedure slightly modifies the input alignment in ways that are usually 

unimportant, but which matter to bootstrapping in RIO.) Keep A’ as the “.aln” 

file.

3. Run hmmbuild with “--hand” option on A’, resulting in HMM H’ (using the 

same options as were used to build the original HMM for A). Calibrate H’ with 

hmmcalibrate and keep as “.hmm” file.

4. Remove non-consensus (insert) columns from A’ (these are annotated by 

HMMER), resulting in alignment A’’.

5. Calculate pairwise distances for A’’, resulting in the “nbd” file (non-

bootstrapped distances).

6. Bootstrap resample the columns of A’’, resulting in the “bsp” file (bootstrap 

positions file).

7. Calculate pairwise distances for bootstrapped A’’, resulting in the “pwd” file.

Rooting of gene trees

The concept of speciation and duplication is only meaningful on rooted gene trees, but 

the neighbor joining algorithm infers unrooted trees. We use a simple parsimony 

criterion for rooting. Gene trees are rooted on each branch, resulting in 2N-3 

differently rooted trees for a gene tree of N sequences. For each of these, the number 



of inferred duplications is determined. From the trees with a minimal number of 

duplications (if there is more than one) the tree with the shortest total height is chosen 

as the rooted tree. Empirical studies on gene trees based on 1750 Pfam alignments 

show that about 60% of trees rooted in such a way have their root in the same position 

that direct midpoint rooting [27] would place it.

Naively performing a full duplication/speciation analysis on each of 2N-3 differently 

rooted trees results in a overall time complexity of O(N

2

) or worse, but this can be 

avoided. For the purpose of the following discussion it is assumed that our SDI 

algorithm for speciation/duplication inference is employed, but the idea applies to all 

algorithms based on a mapping function M defined as follows [28]:

Definition 4. Let G be the set of nodes in a rooted binary gene tree and S the 

set of nodes in a rooted binary species tree. For any node g ∈ G, let γ(g) be the 

set of species in which occur the extant genes descendant from g. For any 

node s ∈ S, let σ(s) be the set of species in the external nodes descendant from 

s. For any g ∈ G, let M(g) ∈ S be the smallest (lowest) node in S satisfying 

γ(g) ⊆ σ(M(g)).

Duplications are then defined using M(g) as follows:

Definition 5. Let g

1

 and g

2

 be the two child nodes of an internal node g of a 

rooted binary gene tree G. Node g is a duplication if and only if M(g) = M(g

1

) 

or M(g) = M(g

2

).

The main task of most algorithms for duplication inference is the calculation of M. 

After M has been calculated for any rooted gene tree G it is possible to explore 

different root placements without having to recalculate M for every node of G. As 

long as the root is moved one node at the time, M has to be recalculated only for two 

nodes: the one node which was child 1 (if the new root is placed on a branch 

originating from child 1 of the previous root) or child 2 (otherwise) of the previous 

root, as well as for the new root itself. Hence, two postorder traversal steps (child 1 or 

2 of the old root, then the new root) in the SDI algorithm are all that is needed. The 

new sum of duplications is determined by keeping track of the change in 

duplication/speciation status in the two recalculated nodes as well as in the previous 

root. Performing this over the whole gene tree (some nodes will be visited twice) it is 

possible to explore all possible root placements and calculate the resulting 

duplications in practically linear time. The pseudocode algorithm is as follows:

Algorithm for speciation duplication inference combined with rooting

Input : binary gene tree G, rooted binary species tree S.

Output: G with "duplication" or "speciation" assigned to each internal node and 

rooted in such a way that the sum of duplications is minimized.

SDIunrooted( G, S )

root gene tree G at the midpoint of any branch;

set B = getBranchesInOrder( G );



SDIse(G, S ) (see [13]);

for each branch b in B:

set n

1 

= child 1 of root of G;

set n

2

 = child 2 of root of G;

root G at the midpoint of branch b;

updateM( n

1

, n

2

, G );

if ( sum of duplications in G < d

min

 ):

set d

min

 = d; 

set G

dmin

 = G;

return G

dmin

;

updateM( n

1

, n

2

, G )

set r = root of G;

if ( child 1 of r == n

1

 || child 2 of r == n

1

 ):

calculateMforNode( n

1

 );

else:

calculateMforNode( n

2

 );

calculateMforNode( r );

calculateMforNode( n )

if ( n != external ):

set a = M( child 1 of n );

set b = M( child 2 of n );

while ( a != b ):

if ( a > b ):

set a = parent of a;

else:



set b = parent of b;

set M( n ) = a;

if ( M( n ) == M( child 1 of n ) || M( n ) == M( child 2 of n ):

n is duplication;

else:

n is speciation;

getBranchesInOrder( G )

set n = root of G;

set i = 0;

while !( n == root && indicator of n == 2 ):

if ( n != external && indicator of n != 2 ):

if ( indicator of n == 0 ):

set indicator of n = 1;

set n = child 1 of n;

else:

set indicator of n = 2;

set n = child 2 of n;

if ( parent of n != root ):

set B[ i ] = branch connecting n and parent of n;

else:

set B[ i ] = branch connecting child 1 of root and child 2 

of root;

set i = i + 1;

else:

if ( parent of n != root && n != external ):

set B[ i ] = branch connecting n and parent of n;



set i = i + 1;

set n = parent of n;

return B;

Master species tree

Duplication inference requires a species tree. For this purpose, a single completely 

binary master species tree was compiled manually, containing 249 of the most 

commonly encountered species in Pfam (spanning Archaea, Bacteria, and 

Eukaryotes). This tree is based mainly on information from Maddison’s “Tree of 

Life” project [http://phylogeny.arizona.edu/tree/phylogeny.html], NCBI’s taxonomy 

database [http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html], the “Deep 

Green” project [http://ucjeps.berkeley.edu/bryolab/greenplantpage.html], and [29-32]. 

This master tree groups nematodes and arthropods into a clade of ecdysozoans 

(molting animals) as proposed by Aguinaldo [29], a classification which is still 

controversial. The tree is available in NHX format [33] at 

[http://www.genetics.wustl.edu/eddy/forester/tree_of_life_bin_1-4.nhx].

Implementation

RIO is implemented in a Perl pipeline of several software programs as follows. 

Alignment of the query sequence is done programs from the HMMER package 

[http://hmmer.wustl.edu/]. Bootstrapping is performed by a bespoke C program. 

Maximum likelihood pairwise distances are calculated using BLOSUM matrices [25] 

by a modified version of TREE-PUZZLE [34]. Neighbor joining trees are calculated 

by a modified version of NEIGHBOR from the PHYLIP package [35]

([http://evolution.genetics.washington.edu/phylip.html]). Rooting and duplication 

inference are accomplished by “SDIunrooted” – a Java implementation of our SDI 

algorithm which incorporates various methods for rooting (see above). The actual 

counting of orthologs is performed by methods of the Java class “RIO”. These 

programs, with the exception of HMMER, are part of the FORESTER package and 

are available under the GNU license at 

[http://www.genetics.wustl.edu/eddy/forester/].

In order to run RIO locally, the following packages and databases need to be present: 

HMMER, the Pfam database [8], the SWISS-PROT and TrEMBL databases [36].

RIO is also available as an analysis webserver at [http://www.rio.wustl.edu/]. The 

pairwise distance and tree calculations are parallelized in this version (currently, ten 

1.26GHz Pentium III processors are being used).



Results and Discussion

Precalculation of pairwise distances

Pairwise distances to be used in RIO analyses were calculated using the “full” 

alignments (as opposed to the smaller curated “seed” alignments) from Pfam 6.6 

(August 2001, 3071 families, [8]). Sequences from species not present in the master 

species tree were removed from the alignments. For computational efficiency reasons, 

alignments that still contained more than 600 sequences were further pruned; 

sequences not originating from SWISS-PROT were discarded, and sequences from 

certain mammals were excluded (mouse, rabbit, hamsters, goat, all primates except 

human), since mammals are likely to be oversampled in most Pfam families. For 

some extremely large families [immunoglobulin domain (PF00047), protein kinase 

domain (PF00069), collagen triple helix repeat (PF01391), and rhodopsin-type 7 

transmembrane receptor (PF00001)], all mammalian sequences except those from 

human and rat were excluded.

Alignments of average length <30 amino acids (<40 for zinc finger domains) or with 

<6 sequences were not analyzed, because of lack of phylogenetic signal. For all other 

families, pairwise distances for 100 bootstrap samples were prepared. Following the 

above rules, pairwise distances were precalculated for 2384 alignments from a total of 

3071 in Pfam 6.6 (75 alignments were too short and 612 alignments contained less 

than six sequences from species in the master species tree).

Phylogenomic analyses of the A. thaliana and C. elegans proteomes

In order to get an estimate of the effectiveness of this implementation of automated 

phylogenomics,  we used the RIO procedure to analyze the A. thaliana [16] and C. 

elegans [17] proteomes.

The input for RIO consists of a query protein sequence together with a Pfam 

alignment for a protein family that the query belongs to. Before RIO could be applied 

we therefore had to determine the matching domains for each protein in the A. 

thaliana and C. elegans proteomes. For proteins composed of different domains, a 

RIO analysis is performed for each domain individually.

The source for protein sequences were: ATH1.pep.03202001, a flatfile database of 

25,579 A. thaliana amino acid sequences (hypothetical, predicted and experimentally 

verified) that have been identified as part of the Arabidopsis Genome Initiative (AGI) 

[http://www.arabidopsis.org/info/agi.html], and wormpep 43, a flatfile database of 

19,730 C. elegans amino acid sequences 

[http://www.sanger.ac.uk/Projects/C_elegans/wormpep/].

The program hmmpfam (version 2.2g) from the HMMER package was used to search 

each protein sequence in ATH1.pep.03202001 and wormpep 43 against Pfam 6.6. 

Only domains with a score above the so-called Pfam gathering cutoff were reported 

(“cut_ga” option) in order to include only confident domain assignments.

The sum of domains assigned to the 25,579 A. thaliana protein sequences was 17,847 

(counting multiple copies of the same domain in one protein as one). 12,431 

sequences matched one domain (containing possibly multiple copies of this one 

domain). 1,982 sequences matched two different domains (containing possibly 



multiple copies of both). 453 sequences matched three or more different domains 

(containing possibly multiple copies of each). Therefore, a total of 14,866 (58%) 

sequences from ATH1.pep.03202001 could be assigned to one or more Pfam families.

Similarly, a sum of 12,314 domains was assigned to the 19,769 C. elegans protein

sequences. 7,698 sequences matched one domain, 1,632 matched two different 

domains, and 388 matched three or more different domains. Thus, 9,718 (49%) 

sequences from wormpep 43 could be assigned to one or more Pfam families.

RIO was then used to analyze each protein sequence matching one or more Pfam 

families. The results from these analyses can be found at

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/]. The approximate time 

requirement was between two and three weeks, performed on eight Pentium III 

800Mhz processors.

How many sequences can be analyzed with RIO?

The first question we asked was simply how many sequences can be analyzed with 

RIO. For an overview, see Table 1. From the 17,847 A. thaliana domain sequences 

matching a Pfam family, 14,905 (84%) could be analyzed with RIO using the 

precalculated distances. 2859 (16%) domain sequences were not analyzed because the 

corresponding Pfam alignments were either too short or did not contain enough 

sequences (as described above). 83 (0.5%) domain sequences were not analyzed 

because the E-value for the match to their profile HMM was below the threshold of 

0.01. This represents a second filtering step for preventing analyzing false domain 

assignments (besides only analyzing domain sequences which score above the 

gathering cutoff in the domain analysis). (RIO performs a preprocessing step before 

aligning the query sequence to a Pfam alignment, in which the program hmmsearch is 

used to trim the query sequence by searching it with the appropriate profile HMM. If 

the resulting E-value was below 0.01 no analysis was performed.) Multiple copies of 

the same domain in certain sequences result in a sum of individual analyses larger 

then the number of analyzed domain sequences. In case of A. thaliana this number 

was 17,940.

Correspondingly, from the 12,314 C. elegans domain sequences matching a Pfam 

family, 11,287 (92%) could be analyzed with RIO using the precalculated distances. 

901 (7%) domain sequences were not analyzed because the corresponding Pfam 

alignments were either too short or did not contain enough sequences. 53 (0.4%) 

domain sequences were not analyzed because the E-value for the match to their 

profile HMM was below the threshold of 0.01. In addition, we did not analyze the 73 

C. elegans sequences matching the immunoglobulin family (PF00047), because we 

considered the phylogenetic signal in this alignment to be questionable. Furthermore, 

most of the 73 sequences contain multiple copies of the immunoglobulin domain (for 

example, CE08028 contains 48 immunoglobulin domains) and we therefore worried 

that the results from this family might skew our overall results. The sum of RIO 

analyses was 14,740.

Thus, a little less than half of each proteome can be analyzed by RIO. The most 

important factor is whether a protein sequence has a match to a Pfam domain family.



RIO analysis of lactate/malate dehydrogenase family members

In order to test whether RIO performs well on an “easy” case, RIO was used to 

analyze lactate/malate dehydrogenase family members both in A. thaliana and C. 

elegans. L-Lactate and malate dehydrogenases are members of the same protein 

family (represented in Pfam as ldh for the NAD-binding domain and ldh_C for the 

alpha/beta C-terminal domain), yet they catalyze different reactions. L-lactate 

dehydrogenase (EC 1.1.1.27) catalyzes the following reaction: (S)-lactate + NAD

+

 = 

pyruvate + NADH [37]. Malate dehydrogenase (NAD) (EC 1.1.1.37) catalyzes: (S)-

malate + NAD

+

 = oxaloacetate + NADH [38]. NADP-dependent malate 

dehydrogenase (EC 1.1.1.82) utilizes NADP

+

 as cofactor instead of NAD

+

[39, 40]. 

According to the Pfam domain analysis described above, the A. thaliana proteome 

contains ten lactate/malate dehydrogenase family members, whereas the C. elegans

proteome contains three. (In addition, C. elegans also contains two putative members 

of a second lactate/malate dehydrogenase family [41], ldh_2, which are not discussed 

here.) The RIO output for the A. thaliana protein F12M16_14 analyzed against the 

ldh domain alignment is shown as an example in Figure 7. The results are 

summarized in Tables 2 and 3. Complete RIO output files (as well as NHX [33] tree 

files) are available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LDH_MD

H/] for A. thaliana and at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/CE_LDH_MD

H/]. In all cases, distinction between malate dehydrogenase (NAD) and lactate 

dehydrogenase is unquestionable and in accordance with existing annotations and 

BLAST results irrespective which domain (ldh or ldh_C) was used for the RIO 

analysis (which implies that no domain swapping occurred over long evolutionary 

times). Furthermore, the same results are achieved whether only the top 1 sequence 

(the one with the highest orthology value, shown in Tables 2 and 3) or the top 10 

sequences are used to transfer annotation from. The only likely NADP-dependent 

malate dehydrogenase is the A. thaliana sequence MCK7_20. For some query 

sequences, the top orthology values are low. Yet, all subtree-neighborings above 50% 

exhibit consensus at distinguishing between malate and lactate dehydrogenase. In 

contrast, a finer distinction (e.g. between mitochondrial and cytoplasmic malate 

dehydrogenase) proves more problematic. While there is no case of actual conflict 

between the existing annotation and the RIO results, in many cases there is no 

compelling evidence in the RIO results to confirm the finer distinctions in the existing 

annotations. Obviously, the resolution power of RIO is limited by the given 

annotations and by the number (or even presence) of sequences for each 

sub(sub)family.

Sequences with no orthologs in the current databases

Next, we determined the distribution of the top orthology bootstrap values. The 

sequence with the top orthology bootstrap value is the one that is most likely to be the 

true ortholog of the query. If the top orthology bootstrap value is low, then the query 

sequence is likely to have no ortholog in the Pfam alignment. These results are 

summarized in Table 4. For example, for 2252 A. thaliana query sequences, at least 

one sequence was orthologous in at least 95 out of 100 resampled trees. In contrast, 

for 930 A. thaliana query sequences, no sequence was orthologous in more than five 

out of 100 bootstrapped trees. For query sequences with more than one copy of the 

same domain, each copy had to meet the conditions individually in order for the 

whole query sequence being counted to be below or above the threshold.



We do not think it is possible at this stage to determine reliable threshold values for 

“true orthologs” or “absence of orthologs”. Such thresholds are very likely to be 

different for different Pfam families since families vary in the phylogenetic signal 

their alignment contains. Some sequences that are very likely to be true orthologs 

nonetheless exhibit marginal orthology bootstrap values (in the range of 70% or even 

lower).

We focused on sequences that appeared to have no orthologs (<5% bootstrap), since 

these would be cases where a RIO analysis might be most able to correct overly 

specific annotations that might be transferred based solely on sequence similarity (as 

illustrated in Figure 1). An example for this is the A. thaliana sequence F28P22_13. 

(Files related to this analysis are available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/].) 

This sequence is a zinc-binding dehydrogenase (Pfam: adh_zinc, PF00107). 

F28P22_13 has been annotated in ATH1.pep.03202001 “as putative cinnamyl-alcohol 

dehydrogenase”, based on sequence similarity (its top 10 BLAST matches are all 

cinnamyl-alcohol dehydrogenases with E-values in the range of 10

-94

 if analyzed 

against all non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF on 

Jan 2, 2002). Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) catalyzes the following 

reaction: cinnamyl alcohol + NADP

+

 = cinnamaldehyde + NADPH (but it can also act 

on coniferyl alcohol, sinapyl alcohol and 4-coumaryl alcohol) in the flavonoid, 

stilbene and lignin biosynthesis pathways [40, 42]. According to the RIO analysis, 

F28P22_13 has no orthologs (see Figure 8 for the corresponding tree and Figure 9 for 

the RIO output). Furthermore its subtree-neighbors above 90%, cinnamyl-alcohol 

dehydrogenases and NADP-dependent alcohol dehydrogenases (EC 1.1.1.2), exhibit 

only partial annotation agreement (namely that of some type of NADP-dependent 

alcohol dehydrogenase, but not EC 1.1.1.2 or EC 1.1.1.195). Hence, F28P22_13 is 

likely to be a (possibly novel) type of NADP-dependent alcohol dehydrogenase (other 

than EC 1.1.1.2), possibly a novel type of cinnamyl-alcohol dehydrogenase.

One might expect that each query sequence that appears to have no orthologs is 

connected with scenario similar to the one described above for F28P22_13. Yet, this 

is clearly not the case, for the following reasons: (i) Gene duplications might not be 

followed by functional modification (many Pfam families are composed of sequences 

which have all the same function, at least at the resolution of the current annotation). 

(ii) Some Pfam families are composed solely of sequences originating from closely 

related (or the same) species (such as PF02362, the B3 DNA binding domain of 

higher plants). For such families, query sequences from the same species group are 

expected to have low orthology values. In such cases the concept of subtree-neighbors 

and ultra-paralogs is more useful than orthologs. (iii) Erroneous RIO results caused by 

an insufficient phylogenetic signal (due to short sequences, for example) can lead to 

low orthology values. For this reason, RIO also outputs the average bootstrap value 

for the consensus tree to give the user a hint about the amount of phylogenetic signal 

in the alignment used.

Inconsistency between orthology bootstrap values and sequence similarity

We were next interested in the number of sequences in the two proteomes for which 

the orthology bootstrap values do not correspond to sequence similarity (Table 5). 

Such disagreements could be caused by the situation illustrated in Figure 2. To 

determine these numbers, we used the following rules. Two thresholds for orthology 



bootstrap values were chosen: O, the minimum for being an ortholog (e.g. 90%) and 

N, the maximum for not being an ortholog (e.g.10%). Furthermore, a maximal ratio R

for the distance of the query to non-orthologs to the distance of the query to orthologs 

was chosen (e.g. 0.5). In order for being counted as exhibiting disagreement between 

the orthology bootstrap values and sequence similarity a query sequence had to fulfill 

the following two conditions: (i) it must have a least one ortholog with bootstrap 

orthology value above or equal to O, and (ii) all sequences in the alignment with 

bootstrap orthology values above N, must have distance ratios smaller or equal to R

for at least one sequence with bootstrap orthology lower or equal to N. Sequences 

from the following species were ignored in this analysis (since they were the species 

of the query sequence or related to it): A. thaliana proteome: Rosidae (A. thaliana, 

Pisum sativum, Glycine max, Cucurbita maxima, Cucumis sativus, Brassica 

campestris, Brassica napus, Citrus unshiu, Citrus sinensis, Theobroma cacao, 

Gossypium hirsutum); C. elegans proteome: nematodes (C. elegans, Caenorhabditis 

briggsae, Haemonchus contortus, Ascaris suum).

Manual inspection of the RIO output leads to the following, somewhat unexpected, 

conclusion. In many cases a discrepancy between orthology bootstrap values and 

sequence similarity is caused by orthologs in only phylogenetically distant (relatively 

to the query sequence) species. This can lead to errors if functional annotation is 

blindly transferred from these orthologs to the query. As an example of this, the 

results of analyzing the A. thaliana O-methyltransferase F16P17_38 are shown in 

Figures 10 and 11. (Complete files are at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F16P17_38/].) 

Even though the F16P17_38 sequence is orthologous to the bacterial 

hydroxyneurosporene methyltransferases (EC 2.1.1.-) [43] it would be dangerous to 

annotate it as such. A more reasonable annotation for this query would be to annotate 

it based on subtree-neighbors and hence call it a plant O-methyltransferase. An 

indication of this problem (besides a discrepancy between orthology bootstrap values 

and sequence similarity) is the meeting of the following three conditions: A query 

sequence has (i) likely orthologs and (ii) likely subtree-neighbors in other species than 

the query itself, yet (iii) there is no significant overlap between the orthologs and the 

subtree-neighbors.

We were unable to find convincing examples in the C. elegans and A. thaliana

proteomes where wrong sequence similarity based annotations might be caused by 

unequal rates of evolution (as illustrated in Figure 2). This is not to say that such cases 

do not exist in those two proteomes, but they are likely to be quite rare. Similarly to 

the issues described in the previous section, the detection of such examples is 

complicated by the fact that for many cases in which a discrepancy between orthology 

bootstrap values and sequence similarity exists, all sequences in the Pfam alignment 

appear to have to same function, the Pfam family is lineage specific, or the 

annotations are too poor/confusing to make any kind of inference.

Conclusions

RIO is a procedure for automated phylogenomics. The RIO procedure appears to be 

particularly useful for the detection of first representatives of novel protein 

subfamilies. Sequence similarity based methods can be misleading in these cases 

since every query is always “most similar to something”, whereas RIO can detect the 

absence of orthologs.



Storm, Sonnhammer, and colleagues have recently developed similar ideas and 

procedures in a program called ORTHOSTRAPPER [44,45]. One distinction between 

the two approaches is that ORTHOSTRAPPER’s orthology determination procedure 

does not employ a species tree for duplication inference; it uses a heuristic based on 

sequence similarity rather than a formally correct phylogenetic means of inferring 

orthology.  Another distinction is that ORTHOSTRAPPER uses uncorrected observed 

mismatches as a sequence distance measure, rather than estimating evolutionary 

distances. In general, RIO brings more of the power of known phylogenetic inference 

algorithms to bear on the problem of proteomic annotation.

Super-orthology is a very stringent criterion. If a query sequence is likely to have 

super-orthologs, they represent an excellent source to transfer functional annotation 

from. In contrast, the absence of super-orthologs does not imply that a function for a 

query sequence cannot be inferred (in the two proteomes analyzed in this work, most 

sequences appear to have no super-orthologs in Pfam 6.6).

Ultra-paralogs are sequences in the same species as the query and are likely to be the 

result of recent duplications and therefore might not have yet undergone much 

functional divergence. Operationally, splice variants can also be thought of as ultra-

paralogs (at least as long as protein sequences are considered).

Subtree-neighbors have two uses: (i) If the subtree-neighbors of the query sequence 

exhibit (partial) agreement in their functional annotations, the elements in which they 

agree might be used to infer a (partial) function for the query. This is useful for query 

sequences that are appear to have no orthologs in the current databases. (ii) For query 

sequences that do have orthologs, absence of overlap between the sequences 

considered orthologous and those which appear to be subtree-neighbors raises a red 

flag, indicating that the orthologs are in phylogenetically distant species relative to the 

query. Transferring annotation from such orthologs is risky. In this case, subtree-

neighbors are a more reliable source to transfer annotation from.

RIO outputs warnings if the distance of the query sequence to other sequences is 

unusually short or long, relative to other branch lengths on the tree. The usefulness of 

this was not investigated in this work.

A RIO procedure based on Pfam alignments analyzes each protein domain 

individually since Pfam is protein family database based on individual domains [8]. In 

some respects, it would be preferable to analyze whole protein sequences, but well 

curated databases of complete protein alignments are not available (to our 

knowledge). However, domain-by-domain analysis is not necessarily 

disadvantageous. Due to domain shuffling many proteins are mosaic proteins, 

composed of domains with different evolutionary histories [46, 47]. For such proteins 

it makes much sense to analyze each domain individually. Furthermore, mosaic 

proteins from sufficiently distant species might be impossible to be aligned over more 

than one domain at the time, since they are unlikely to exhibit the same domain 

organization. The same is true for multiple copies of the same domain in protein: 

Each of them is analyzed individually (such proteins often differ in their number of 

domain copies and could therefore not be aligned from end to end for the whole

family).



In general, the concept of “annotation consensus” is very important in this work (for 

example consensus between subtree-neighbors, or between subtree-neighbors and 

orthologs). We have employed this notion loosely. A useful future extension would be 

to incorporate automated annotation consensus detection into RIO. This would 

include annotation of internal nodes of a gene tree with a “biological function”. 

Automated consensus detection is trivial for a highly formalized notation system, such 

as EC numbers (the consensus of EC 1.1.1.3 and EC 1.1.1.23 is EC 1.1.1, a 

oxidoreductase acting on the CH-OH group of donors with NAD

+

 or NADP

+

 as 

acceptor [40]). Obviously, it is much more difficult to analyze natural language 

annotations in the same manner. Perhaps this could be accomplished by utilizing the 

set of structured vocabularies of the Gene Ontology (GO) project [48]

[http://www.geneontology.org/].
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Figures

Figure 1 - Over annotation due to database bias or gene loss under equal rates 

of evolution

Species harboring the sequences are indicated. Two cases are depicted. In A, the 

query sequence belongs to the “Y” subfamily which can be correctly inferred by both 

sequence similarity and phylogenetic tree based methods (in situation A, the query is 

most similar to “Y” of rat and mouse). In short, in situation A, orthology and “most 

similar” do (partially) overlap. In B, a situation is depicted where the query is actually 

a member of a third subfamily “X” but this can only be inferred by considering the 

evolutionary history of this sequence family. Sequence similarity based methods 

would misleadingly indicate that this query belongs to “Y” since it is most similar to 

“Y” in rat, mouse and wheat. In short, in situation B, orthology and “most similar” do 



not correspond. Observe that if there would have been already members of “X” in the 

database (no gene loss and complete sampling) the query in B could have been 

correctly determined to belong to a “X” subfamily (under equal rates of evolution).

Figure 2 - Over annotation due to unequal rates of evolution

Sequence similarity based methods would indicate that the query is a member of the 

“Z” subfamily. Phylogenetic tree based methods correctly identify it as a member of 

subfamily “Y”.

Figure 3 - The reasons for introducing super-orthologs

Examples of how inferring the biological role of a query sequence by simply 

transferring functional annotation from a orthologous sequence might lead to 

inaccuracies. These potential pitfalls lead us to introduce the concept of super-

orthologs (Definition 1).

Figure 4 - An example of ultra-paralogous sequences

Figure 5 - An illustration of subtree-neighbors

The dotted subtrees could either be just one external node or a subtree of arbitrary size 

and topology. Species information is of no consequence for the concept of subtree-

neighbors. The subtree-neighbors depicted here are for the default of k=2.

Figure 6 - A simple example of the RIO procedure

Four bootstrap resampled gene trees are shown. Letters represent sequence 

names/”functions”. “A” (nematode and wheat) are true orthologs of the human query 

sequence, whereas “B” (rat) is a true paralog of the query (i.e. the first tree happens to 

be the real one). In 3 out of 4 trees nematode “A” appears orthologous to the query, in 

3 out of 4 trees wheat “A” appears orthologous to the query. Rat “B” never appears to 

be orthologous. For an example of actual RIO output see Figure 7.

Figure 7 - RIO output for the A. thaliana protein F12M16_14 analyzed against 

the Pfam ldh domain alignment (PF00056)

The “Sequence” column identifies sequences in the Pfam alignment either by their 

SWISS-PROT “ID” or their TrEMBL “AC” [36] with added species information (the 

numbers after the dash are the Pfam domain boundaries added by HMMER). 

“Description” is the “DE” information either from SWISS-PROT or TrEMBL. The 

number of observed orthologies (“o”), subtree-neighborings (“n”), and super-

orthologies (“s”) to the query in the 100 bootstrapped trees are indicated (in %) for the 

sequences in the Pfam alignment. Furthermore the evolutionary distances (average 

number of amino acid replacements per residue calculated by maximum likelihood 

based on the BLOSUM 62 matrix) between the query and the sequences in the Pfam 

alignment are shown. For space reasons some lines of the output are not shown (“…”) 

(the complete output is available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/AT_LDH_MD

H/]). The output is sorted by orthology values. According to this RIO analysis the 

query sequence is likely to be orthologous and a subtree-neighbor to the plant 

sequences MDHM_BRANA and Q9SPB8_SOYBN. In addition, the query is likely to 

be super-orthologous to MDHM_BRANA. The bacterial sequences MDH_ECOLI 



and MDH_SALTY are also possibly orthologs but no subtree-neighbors. Hence, 

F12M16_14 is very likely to be a malate dehydrogenase and possibly mitochondrial.

Figure 8 - A phylogenetic tree for zinc-binding dehydrogenases produced by 

RIO

This tree is based on the Pfam alignment adh_zinc (PF00107) and is a subtree of a 

larger tree. It has been calculated by the neighbor joining method using maximum 

likelihood pairwise distances [34] based on the BLOSUM 62 matrix [25]. Gene 

duplication are indicated by circles (inferred by our SDI algorithm [13]). The tree was 

rooted by minimizing the sum of duplications. The tree image was produced by ATV 

[33]. Species are represented by their SWISS-PROT abbreviations (ARATH: 

Arabidopsis thaliana, TOBAC: Nicotiana tabacum, MAIZE: Zea mays, MYCTU: 

Mycobacterium tuberculosis, BACSU: Bacillus subtilis, LEIMA: Leishmania major, 

HELPY: Helicobacter pylori, SYNY3: Synechocystis sp. strain PCC 6803, YEAST: 

Saccharomyces cerevisiae, KLULA: Kluyveromyces lactis, KLUMA: Kluyveromyces 

marxianus, CANAL: Candida albicans, EMENI: Emericella nidulans, SCHPO: 

Schizosaccharomyces pombe, CAEEL: Caenorhabditis elegans, BACST: Bacillus 

stearothermophilus). The A. thaliana query sequence F28P22_13 is labeled with Q. 

The bootstrap orthology values for potential orthologs are indicated in brackets. 

According to this tree, F28P22_13 has no orthologs.

Figure 9 - RIO output for the A. thaliana protein F28P22_13 analyzed against 

the Pfam adh_zinc domain alignment (PF00107)

For an explanation of the output see Figure 7. For space reasons some lines of the 

output are not shown (“…”) (the complete output is available at 

[http://www.genetics.wustl.edu/eddy/forester/rio_analyses/RIO_paper/F28P22_13/]). 

The output is sorted by orthology values. According to this RIO analysis the query 

sequence is likely to have no orthologs in this alignment. In contrast, the query 

probably has subtree-neighbors which are cinnamyl-alcohol dehydrogenases (EC 

1.1.1.195), NADP-dependent alcohol dehydrogenases (EC 1.1.1.2), as well as other 

zinc-containing alcohol dehydrogenases.

Figure 10 - A phylogenetic tree for O-methyltransferases produced by RIO

This tree is based on the Pfam alignment Methyltransf_2 (PF00891). It has been 

constructed in the same manner as the tree in Figure 8. (TOBAC: Nicotiana tabacum, 

ARATH: Arabidopsis thaliana, MAIZE: Zea mays, HORVU: Hordeum vulgare, 

WHEAT: Triticum aestivum, PEA: Pisum sativum, RHOSH: Rhodobacter 

sphaeroides, RHOCA: Rhodobacter capsulatus, BOVIN: Bos taurus, CHICK: Gallus 

gallus, RAT: Rattus norvegicus, MYCTU: Mycobacterium tuberculosis.). The A. 

thaliana query sequence F16P17_38 is labeled with Q. The bootstrap orthology 

values for potential orthologs are indicated in brackets (the brightness of the green 

color is proportional to this value). The apparent trifurcation at the root is caused by a 

branch length of 0.0 (the bacterial hydroxyneurosporene methyltransferases subtree 

and the plant O-methyltransferases subtree are connected by a speciation event). 

Inferred gene duplication are indicated by circles. According to this tree, F16P17_38 

has orthologs only in bacteria.



Figure 11 - RIO output for the A. thaliana protein F16P17_38 analyzed against 

the Pfam Methyltransf_2 domain alignment (PF00891)

For an explanation of the output see Figure 7. The output is sorted by orthology 

values. According to this RIO analysis the orthologs of F16P17_38 are bacterial 

hydroxyneurosporene methyltransferases. These contrast with the subtree-neighbors 

of F16P17_38 which are all plant O-methyltransferases.

Tables

Table 1 - : Number of domains which can be analyzed with RIO

Protein 

sequences in 

proteome

Sum of 

domains 

assigned to 

proteome

Domain 

sequences 

analyzed with 

RIO

Sum of 

individual RIO 

analyses

A. thaliana 

25,579 17,847 14,905 17,940

C. elegans

19,769 12,314 11,287 14,740

Table 2 - RIO analysis of A. thaliana lactate/malate dehydrogenase family 

members

Annotations are from ATH1.pep.03202001 (Arabidopsis Genome Initiative 

[http://www.arabidopsis.org/info/agi.html]). “o=” and “n=” are orthology and subtree-

neighboring values for the sequence in the Pfam alignment (ldh or ldh_C) with the 

highest orthology value towards the respective query sequence. LDH stands for L-

lactate dehydrogenase. MDH stands for malate dehydrogenase.

RIO top 1 hit (highest orthology value)

Domain used for analysis:

Sequence ID Annotation 

ldh (PF00056) Ldh_C (PF02866)

dl4665w LDH (LDH1) L-LDH

(o=91%, n=3%)

L-LDH

(o=94%, n=12%)

F19P19_13 putative MDH MDH

(o=2%, n=98%)

cytoplasmic MDH

(o=40%, n=78%)

F12M16_14 mitochondrial NAD-

dependent MDH

mitochondrial MDH

(o=89%, n=100%)

mitochondrial MDH

(o=94%, n=66%)

T30L20.4 putative glyoxysomal 

MDH precursor

MDH glyoxysomal MDH



MDH precursor (o=55%, n=0%) (o=95%, n=37%)

K15M2_16 mitochondrial NAD-

dependent MDH, 

putative

MDH

(o=89%, n=100%)

mitochondrial MDH

(o=84%, n=80%)

F1P2_70 Chloroplast NAD-

dependent MDH

MDH

(o=87%, n=21%)

MDH

(o=85%, n=6%)

F17I14_150 microbody NAD-

dependent MDH

glyoxysomal MDH

(o=100%, n=100%)

glyoxysomal MDH

(o=80%, n=97%)

MWF20_2 cytoplasmic MDH MDH

(o=2%, n=100%)

MDH

(o=38%, n=75%)

MIK19_17 cytoplasmic MDH cytoplasmic MDH

(o=5%, n=99%)

MDH

(o=31%, n=84%)

MCK7_20 NADP-dependent 

MDH

MDH

(o=60%, n=30%)

chloroplast NADP-

MDH (EC 1.1.1.82)

(o=68%, n=82%)

Table 3 - RIO analysis of C. elegans lactate/malate dehydrogenase family 

members

Annotations are from WormPD

TM

[49] (12/31/2001) 

[http://www.proteome.com/databases/index.html]. For more explanations see Table 2.

RIO top 1 hit (highest orthology 

value)

Domain used for analysis:

Sequence ID Annotation

ldh (PF00056) ldh_C (PF02866)

F13D12.2 

(CE02181)

LDH (predicted) L-LDH

(o=75%, 

n=61%)

L-LDH (B chain)

(o=66%, n=23%)

F20H11.3 

(CE09512)

Member of the MDH 

protein family 

(predicted)

MDH

(o=42%, 

n=16%)

MDH

(o=53%, n=34%)



n=16%)

F46E10.10 

(CE20820)

Putative MDH, possible 

ortholog of H. sapiens 

Hs.75375 gene product 

(cytoplasmic MDH) 

(predicted)

cytoplasmic 

MDH

(o=13%, 

n=95%)

MDH

(o=76%, n=52%)

Table 4 - Top orthology bootstrap values of RIO analyses

Top orthology 

bootstrap values [%]

A. thaliana

(total: 14,905)

C. elegans

(total: 11,287)

≥ 95

2252 922

≥ 90

2982 1224

≥ 80

4185 1858

≥ 70

5198 2393

≥ 50

7493 3459

≤ 20

2680 4751

≤ 10

1360 3171

≤ 5

930 2452

Table 5 - The numbers of sequences for which the orthology bootstrap values 

do not correspond to sequence similarity

Thresholds Number of query sequences

O N R A. thaliana C. elegans

90% 10% 0.5 128 19

90% 10% 0.8 328 102

80% 20% 0.5 254 45
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Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

MDHM_BRANA/27-173       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 89  100   89  0.028000 

Q9SPB8_SOYBN/31-177     MALATE DEHYDROGENASE.                                                        87  100   42  0.109080 

MDH_ECOLI/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.458890 

MDH_SALTY/1-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                          53    0    0  0.468930 

… 

MDHM_CHLRE/60-205       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 32    2    4  0.358410 

MDHM_RAT/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.470390 

MDHM_PIG/22-168         MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.471480 

MDHM_HUMAN/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491850 

MDHM_MOUSE/22-168       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                 18    2    0  0.491910 

O15769_TRYBB/6-151      MALATE DEHYDROGENASE.                                                        14    3    0  0.492340 

Q9VU29_DROME/25-171     MALATE DEHYDROGENASE.                                                         6    3    0  0.718600 

Q9Y7R8_SCHPO/26-173     MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.                                4    2    0  0.557380 

Q9VEB1_DROME/22-168     CG7998 PROTEIN.                                                               3    0    0  0.455680 

O76731_TRYBB/1-154      GLYCOSOMAL MALATE DEHYDROGENASE.                                              2    1    0  0.726530 

Q9U140_LEIMA/1-153      MALATE DEHYDROGENASE.                                                         2    1    0  0.832380 

MDHC_YEAST/10-176       MALATE DEHYDROGENASE, CYTOPLASMIC (EC 1.1.1.37).                              2    0    0  0.845440 

MDHM_YEAST/15-163       MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).                  1    1    0  0.605030 

MDHP_YEAST/1-143        MALATE DEHYDROGENASE, PEROXISOMAL (EC 1.1.1.37).                              1    0    0  0.580820 

MDHG_ORYSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.338480 

MDHG_SOYBN/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.350720 

MDHG_CUCSA/42-188       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.368460 

MDHG_BRANA/39-185       MALATE DEHYDROGENASE, GLYOXYSOMAL PRECURSOR (EC 1.1.1.37).                    0   12    0  0.424130 

O81609_PEA/77-223       NODULE-ENHANCED MALATE DEHYDROGENASE.                                         0    1    0  0.399520 

O81844_ARATH/80-226     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.428890 

Q9SN86_ARATH/80-226     MALATE DEHYDROGENASE.                                                         0    1    0  0.428890 

Q9XQP4_TOBAC/91-237     MALATE DEHYDROGENASE PRECURSOR.                                               0    1    0  0.442160 

O81278_SOYBN/92-238     MALATE DEHYDROGENASE.                                                         0    1    0  0.446470 

Q9U8L4_LEIMA/1-71       MALATE DEHYDROGENASE (FRAGMENT).                                              0    1    0  0.468950 

P93106_CHLRE/34-180     NAD-DEPENDENT MALATE DEHYDROGENASE (EC 1.1.1.37) (MALIC DEHYDROGENASE).       0    0    0  0.462200 

MDHM_CAEEL/26-172       PROBABLE MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR (EC 1.1.1.37).         0    0    0  0.483690 

Q9VU28_DROME/20-166     MALATE DEHYDROGENASE.                                                         0    0    0  0.907050 

O59312_PYRHO/1-23       HYPOTHETICAL 40.1 KDA PROTEIN PH1688.                                         0    0    0  1.000670 

MDH_SULAC/1-37          MALATE DEHYDROGENASE (EC 1.1.1.37) (FRAGMENT).                                0    0    0  1.270070 

MDH_RICPR/2-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.369000 

Q29385_PIG/18-42        LACTATE DEHYDROGENASE-A (FRAGMENT).                                           0    0    0  1.384020 

Q55383_SYNY3/11-154     2-KETOACID DEHYDROGENASE (MALATE DEHYDROGENASE, LACTATE DEHYDROGENASE).       0    0    0  1.468610 

MDH_BACSU/2-147         MALATE DEHYDROGENASE (EC 1.1.1.37) (VEGETATIVE PROTEIN 69) (VEG69).           0    0    0  1.482390 

MDH_CHLVI/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.509210 

MDH_ARCFU/1-142         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.523550 

MDH_AERPE/7-145         MALATE DEHYDROGENASE (EC 1.1.1.37).                                           0    0    0  1.531830 

LDH_THEMA/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.545580 

LDH_THEAQ/1-140         L-LACTATE DEHYDROGENASE (EC 1.1.1.27).                                        0    0    0  1.603000 

O67581_AQUAE/11-161     MALATE DEHYDROGENASE.                                                         0    0    0  1.617760 

LDHA_HORVU/41-183       L-LACTATE DEHYDROGENASE A (EC 1.1.1.27) (LDH-A).                              0    0    0  1.618550 

LDHH_RABIT/2-45         L-LACTATE DEHYDROGENASE H CHAIN (EC 1.1.1.27) (LDH-B) (FRAGMENT).             0    0    0  1.618900 

… 

 

Figure 7



Q9SJ10_ARATH
Q9SJ25_ARATH

CAD1_ARATH
CAD3_ARATH
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CAD4_ARATH
ADH_MYCTU
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YAHK_ECOLI [ 1 ]
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F28P22_13_ARATH [ Q ]  
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P95153_MYCTU
ADH2_YEAST
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Q9UAT1_CAEEL (?)

ADH3_BACST
ADH1_BACST
ADH2_BACST

ADHP_ECOLI (propanol preferring 1.1.1.1)

EC 1.1.1.195
cinnamyl-alcohol dehydrogenase
reaction: cinnamyl alcohol + NADP+
= cinnamaldehyde + NADPH

EC 1.1.1.2
alcohol dehydrogenase (NADP)
reaction: an alcohol + NADP+
= an aldehyde + NADPH

EC 1.1.1.1
alcohol dehydrogenase (NAD)
reaction: an alcohol + NAD+
= an aldehyde + NADH

?
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Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

YAHK_ECOLI/14-343       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN BETT-PRPR IN     1   98    0  0.923480 

                        TERGENIC REGION.                                                           

P71306_ECOLI/14-343     SIMILAR TO CINNAMYL-ALCOHOL DEHYDROGENASE OF P. CRISPUM.                      1   98    0  0.923760 

XYLB_PSEPU/14-365       ARYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.90) (BENZYL ALCOHOL DEHYDROGENASE) (     1    1    1  1.768320 

                        BADH).                                                                     

Q9SJ10_ARATH/18-348     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.788690 

Q9SJ25_ARATH/18-349     PUTATIVE CINNAMYL-ALCOHOL DEHYDROGENASE.                                      0   99    0  0.801010 

CAD1_ARATH/24-353       CINNAMYL-ALCOHOL DEHYDROGENASE 1 (EC 1.1.1.195) (CAD).                        0   99    0  0.813150 

CAD2_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-1 (EC 1.1.1.195) (CAD).                   0   99    0  0.888760 

O65621_ARATH/25-354     CINNAMYL ALCOHOL DEHYDROGENASE-LIKE PROTEIN, SUBUNIT A (CINNAMYL ALCOHOL      0   99    0  0.905050 

                        DEHYDROGENASE-LIKE PROTEIN, LCADA).                                        

CAD3_ARATH/20-349       CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (EC 1.1.1.195) (CAD).                   0   99    0  0.911850 

CAD4_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.996520 

CAD9_TOBAC/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD).                          0   99    0  0.998400 

CADH_MAIZE/21-350       CINNAMYL-ALCOHOL DEHYDROGENASE (EC 1.1.1.195) (CAD) (BROWN-MIDRIB 1 PROTE     0   99    0  1.036040 

                        IN).                                                                       

CAD4_ARATH/22-351       CINNAMYL-ALCOHOL DEHYDROGENASE 2 (EC 1.1.1.195) (CAD).                        0   99    0  1.039940 

ADH_MYCTU/15-343        NADP-DEPENDENT ALCOHOL DEHYDROGENASE (EC 1.1.1.2).                            0   98    0  0.935120 

O06007_BACSU/18-346     NADP-DEPENDENT ALCOHOL DEHYDROGENASE.                                         0   98    0  0.955200 

Q9U1F0_LEIMA/16-346     NADP-DEPENDENT ALCOHOL HYDROGENASE.                                           0   98    0  0.968460 

O25732_HELPY/16-343     CINNAMYL-ALCOHOL DEHYDROGENASE ELI3-2 (CAD).                                  0   97    0  1.123840 

YM97_YEAST/20-353       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN PRE5-FET4 IN     0   76    0  1.388040 

                        TERGENIC REGION.                                                           

YCZ5_YEAST/20-354       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN YCR105W (EC 1.1     0   76    0  1.439990 

                        .1.-).                                                                     

P74721_SYNY3/13-333     ZINC-CONTAINING ALCOHOL DEHYDROGENASE FAMILY.                                 0   60    0  1.354540 

YJGB_ECOLI/15-337       HYPOTHETICAL ZINC-TYPE ALCOHOL DEHYDROGENASE-LIKE PROTEIN IN GNTV-LEUX IN     0   60    0  1.368110 

                        TERGENIC REGION (ORF1).                                                    

P95153_MYCTU/25-346     ADHA.                                                                         0    9    0  1.931400 

ADH3_BACST/12-336       ALCOHOL DEHYDROGENASE (EC 1.1.1.1) (ADH-HT).                                  0    8    0  1.272530 

… 
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Q42958_TOBAC (2.1.1.6)

Q04065_TOBAC (2.1.1.6)
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Q9T002_ARATH
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Q9RFC4_RHOSH [ 93 ] 

CRTF_RHOCA [ 93 ]

HIOM_BOVIN [ 3 ]

HIOM_HUMAN [ 3 ]

HIOM_CHICK [ 3 ]

O09179_RAT [ 3 ] 

O95671_HUMAN [ 3 ] 

O53764_MYCTU [ 10 ]

EC 2.1.1.4
acetylserotonin O-methyltransferase
reaction:
S-adenosyl-L-methionine + N-acetylserotonin
= S-adenosyl-L-homocysteine + melatonin

?

EC 2.1.1.-
hydroxyneurosporene methyltransferase
reaction:
converts hydroxyneurosporene to 
methoxyneurosporene
or demethylspheroidene to spheroidene

EC 2.1.1.-
various (O-) methyltransferases

EC 2.1.1.6
catechol O-methyltransferase
reaction: S-adenosyl-L-methionine + a catechol
= S-adenosyl-L-homocysteine + a guaiacol
and
EC 2.1.1.68
caffeate O-methyltransferase
reaction: S-adenosyl-L-methionine
+ 3,4-dihydroxy-trans-cinnamate
= S-adenosyl-L-homocysteine
+ 3-methoxy-4-hydroxy-trans-cinnamate
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Sequence                Description                                                                o[%] n[%] s[%]  distance 

--------                -----------                                                                ---- ---- ----  -------- 

Q9RFC4_RHOSH/112-349    CRTF.                                                                        93    0    0  1.666990 

CRTF_RHOCA/137-367      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.707230 

CRTF_RHOSH/109-346      HYDROXYNEUROSPORENE METHYLTRANSFERASE (EC 2.1.1.-) (O-METHYLASE).            93    0    0  1.713780 

Q96565_HORVU/110-352    CAFFEIC ACID O-METHYLTRANSFERASE (EC 2.1.1.6) (CATECHOL O- METHYLTRANSFER    19   43    0  0.913640 

                        ASE) (0-METHYLTRANSFERASE).                                                

O53764_MYCTU/71-316     PUTATIVE METHYLTRANSFERASE.                                                  10    0    0  1.602520 

O95671_HUMAN/349-595    ASMTL PROTEIN.                                                                3    0    0  1.580280 

O09179_RAT/80-322       HYDROXYINDOLE-O-METHYLTRANSFERASE (EC 2.1.1.4) (ACETYLSEROTONIN O- METHYL     3    0    0  1.674460 

                        TRANSFERASE) (HYDROXYINDOLE O-METHYLTRANSFERASE).                          

HIOM_HUMAN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.749550 

                        -METHYLTRANSFERASE) (ASMT).                                                

HIOM_BOVIN/79-322       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.764290 

                        -METHYLTRANSFERASE) (ASMT).                                                

HIOM_CHICK/81-323       HYDROXYINDOLE O-METHYLTRANSFERASE (EC 2.1.1.4) (HIOMT) (ACETYLSEROTONIN O     3    0    0  1.787620 

                        -METHYLTRANSFERASE) (ASMT).                                                

Q9SRD4_ARATH/100-342    PUTATIVE CATECHOL O-METHYLTRANSFERASE.                                        0  100    0  0.526350 

O49964_ARATH/97-338     O-METHYLTRANSFERASE 1.                                                        0   72    0  0.632160 

Q42958_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.639820 

Q04065_TOBAC/99-340     CATECHOL O-METHYLTRANSFERASE.                                                 0   72    0  0.649210 

Q42949_TOBAC/100-342    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0   72    0  0.663620 

COMT_MAIZE/100-341      CAFFEIC ACID 3-O-METHYLTRANSFERASE (EC 2.1.1.68) (S-ADENOSYSL-L- METHIONI     0   72    0  0.721520 

                        NE:CAFFEIC ACID 3-O-METHYLTRANSFERASE) (COMT).                             

Q9SCP7_ARATH/93-336     CAFFEIC ACID O-METHYLTRANSFERASE-LIKE PROTEIN.                                0   37    0  0.988010 

Q9ZU24_ARATH/96-339     F5F19.5 PROTEIN.                                                              0   36    0  0.701190 

Q9T003_ARATH/103-358    O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  0.974450 

Q9T002_ARATH/46-301     O-METHYLTRANSFERASE-LIKE PROTEIN.                                             0    2    0  1.100820 

ZRP4_MAIZE/94-341       O-METHYLTRANSFERASE ZRP4 (EC 2.1.1.-) (OMT).                                  0    2    0  1.116310 

O24305_PEA/93-337       6A-HYDROXYMAACKIAIN METHYLTRANSFERASE.                                        0    2    0  1.182120 

Q43771_HORVU/117-367    CATECHOL O-METHYLTRANSFERASE (EC 2.1.1.6).                                    0    2    0  1.264630 

Q9ZRC1_WHEAT/97-359     O-METHYLTRANSFERASE.                                                          0    2    0  1.270800 

O49010_MAIZE/90-340     HERBICIDE SAFENER BINDING PROTEIN.                                            0    2    0  1.530230 

 

Figure 11


	Header page
	Article
	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11


