// $Id: // FORESTER -- software libraries and applications // for evolutionary biology research and applications. // // Copyright (C) 2014 Christian M. Zmasek // All rights reserved // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA // // Contact: phylosoft @ gmail . com // WWW: https://sites.google.com/site/cmzmasek/home/software/forester package org.forester.evoinference.distance; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.List; import java.util.Map.Entry; import java.util.SortedSet; import org.forester.evoinference.matrix.distance.BasicSymmetricalDistanceMatrix; import org.forester.phylogeny.Phylogeny; import org.forester.phylogeny.PhylogenyNode; import org.forester.util.ForesterUtil; public final class NeighborJoiningR { private final static DecimalFormat DF = new DecimalFormat( "0.00000" ); private BasicSymmetricalDistanceMatrix _d; private double[][] _d_values; private final DecimalFormat _df; private PhylogenyNode[] _external_nodes; private int[] _mappings; private int _n; private double[] _r; private final boolean _verbose; private int _min_i; private int _min_j; private S _s; private double _d_min; //TODO remove me private int[] _rev_mappings; private NeighborJoiningR() { _verbose = false; _df = null; } private NeighborJoiningR( final boolean verbose, final int maximum_fraction_digits_for_distances ) { if ( ( maximum_fraction_digits_for_distances < 1 ) || ( maximum_fraction_digits_for_distances > 9 ) ) { throw new IllegalArgumentException( "maximum fraction digits for distances is out of range: " + maximum_fraction_digits_for_distances ); } _verbose = verbose; _df = new DecimalFormat(); _df.setMaximumFractionDigits( maximum_fraction_digits_for_distances ); _df.setRoundingMode( RoundingMode.HALF_UP ); } public final Phylogeny execute( final BasicSymmetricalDistanceMatrix distance ) { reset( distance ); final Phylogeny phylogeny = new Phylogeny(); while ( _n > 2 ) { System.out.println( "N=" + _n ); System.out.println(); // Calculates the minimal distance. // If more than one minimal distances, always the first found is used final double m = updateM(); final int otu1 = _min_i; final int otu2 = _min_j; System.out.println( _min_i + " " + _min_j + " => " + DF.format( m ) + " (" + DF.format( _d_min ) + ")" ); // It is a condition that otu1 < otu2. //System.out.println( "mapped 1 " + _mappings[ otu1 ] ); System.out.println( "mapped otu 2 " + _mappings[ otu2 ] ); final PhylogenyNode node = new PhylogenyNode(); //final double d = getDvalueUnmapped( otu1, _mappings[ otu2 ] ); final double d = _d_values[ otu1 ][ _mappings[ otu2 ] ]; final double d1 = ( d / 2 ) + ( ( _r[ _rev_mappings[ otu1 ] ] - _r[ otu2 ] ) / ( 2 * ( _n - 2 ) ) ); final double d2 = d - d1; if ( _df == null ) { _external_nodes[ otu1 ].setDistanceToParent( d1 ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( d2 ); } else { // yes, yes, slow but only grows with n (and not n^2 or worse)... _external_nodes[ otu1 ].setDistanceToParent( Double.parseDouble( _df.format( d1 ) ) ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( Double.parseDouble( _df.format( d2 ) ) ); } node.addAsChild( _external_nodes[ otu1 ] ); node.addAsChild( getExternalPhylogenyNode( otu2 ) ); if ( _verbose ) { printProgress( otu1, otu2, node ); } System.out.println( "otu1=" + otu1 ); System.out.println( "otu2=" + otu2 ); calculateDistancesFromNewNode( otu1, otu2, d ); // _external_nodes[ _mappings[ otu1 ] ] = node; _external_nodes[ otu1 ] = node; updateMappings( otu2 ); --_n; System.out.println( "" ); System.out.println( "----------------------------------------------------------------------------------" ); System.out.println( "" ); } final double d = getDvalue( 0, 1 ) / 2; if ( _df == null ) { getExternalPhylogenyNode( 0 ).setDistanceToParent( d ); getExternalPhylogenyNode( 1 ).setDistanceToParent( d ); } else { final double dd = Double.parseDouble( _df.format( d ) ); getExternalPhylogenyNode( 0 ).setDistanceToParent( dd ); getExternalPhylogenyNode( 1 ).setDistanceToParent( dd ); } final PhylogenyNode root = new PhylogenyNode(); root.addAsChild( getExternalPhylogenyNode( 0 ) ); root.addAsChild( getExternalPhylogenyNode( 1 ) ); if ( _verbose ) { printProgress( 0, 1, root ); } phylogeny.setRoot( root ); phylogeny.setRooted( false ); return phylogeny; } public final List execute( final List distances_list ) { final List pl = new ArrayList(); for( final BasicSymmetricalDistanceMatrix distances : distances_list ) { pl.add( execute( distances ) ); } return pl; } private final void calculateDistancesFromNewNode( final int otu1, final int otu2, final double d ) { System.out.print( "new D values: " ); for( int j = 0; j < _n; ++j ) { if ( j == otu2 ) { continue; } if ( otu1 < _mappings[ j ] ) { updateDvalue( otu1, otu2, j, d ); } } System.out.println(); } private final void updateDvalue( final int otu1, final int otu2, final int j, final double d ) { final double new_d = ( getDvalueUnmapped( otu1, _mappings[ j ] ) + getDvalue( j, otu2 ) - d ) / 2; System.out.print( DF.format( new_d ) + " " ); // System.out.println( "going to remove: " + getDvalueUnmapped( otu1, _mappings[ j ] ) + ", " + otu1 + ", " // + _mappings[ j ] ); if ( otu1< _mappings[ j ] ) { _s.removePairing( getDvalueUnmapped( otu1, _mappings[ j ] ), otu1, _mappings[ j ] ); } else { _s.removePairing( getDvalueUnmapped( otu1, _mappings[ j ] ), _mappings[ j ] , otu1 ); } // System.out.println( "going to remove: " + getDvalue( j, otu2 ) + ", " +_mappings[ otu2 ] + ", " // + _mappings[ j ] ); if ( _mappings[ otu2 ] < _mappings[ j ] ) { _s.removePairing( getDvalue( j, otu2 ), _mappings[ otu2 ] , _mappings[ j ] ); } else { _s.removePairing( getDvalue( j, otu2 ) , _mappings[ j ], _mappings[ otu2 ] ); } _s.addPairing( new_d, otu1, _mappings[ j ] ); setDvalueU( otu1, j, new_d ); } private void setDvalueU( final int i, final int j, final double d ) { if ( i < _mappings[ j ] ) { _d_values[ i ][ _mappings[ j ] ] = d; } _d_values[_mappings[ j] ][ i ] = d; } private double getDvalue( final int i, final int j ) { if ( i < j ) { return _d_values[ _mappings[ i ] ][ _mappings[ j ] ]; } return _d_values[ _mappings[ j ] ][ _mappings[ i ] ]; } private double getDvalueUnmapped( final int i, final int j ) { if ( i < j ) { return _d_values[ i ][ j ]; } return _d_values[ j ][ i ]; } private final void calculateNetDivergences() { for( int i = 0; i < _n; ++i ) { _r[ i ] = calculateNetDivergence( i ); } } private double calculateNetDivergence( final int i ) { double d = 0; for( int n = 0; n < _n; ++n ) { if ( i != n ) { d += getDvalue( n, i ); } } return d; } private final PhylogenyNode getExternalPhylogenyNode( final int i ) { return _external_nodes[ _mappings[ i ] ]; } private final void initExternalNodes() { _external_nodes = new PhylogenyNode[ _n ]; String id; for( int i = 0; i < _n; ++i ) { _external_nodes[ i ] = new PhylogenyNode(); id = _d.getIdentifier( i ); if ( id != null ) { _external_nodes[ i ].setName( id ); } else { _external_nodes[ i ].setName( Integer.toString( i ) ); } _mappings[ i ] = i; _rev_mappings[ i ] = i; } } private final void printProgress( final int otu1, final int otu2, final PhylogenyNode node ) { System.out.println( "Node " + printProgressNodeToString( _external_nodes[ otu1 ] ) + " joins " + ( printProgressNodeToString( getExternalPhylogenyNode( otu2 ) ) ) + " [resulting in node " + ( printProgressNodeToString( node ) ) + "]" ); } private final String printProgressNodeToString( final PhylogenyNode n ) { if ( n.isExternal() ) { if ( ForesterUtil.isEmpty( n.getName() ) ) { return Long.toString( n.getId() ); } return n.getName(); } return n.getId() + " (" + ( ForesterUtil.isEmpty( n.getChildNode1().getName() ) ? n.getChildNode1().getId() : n.getChildNode1() .getName() ) + "+" + ( ForesterUtil.isEmpty( n.getChildNode2().getName() ) ? n.getChildNode2().getId() : n.getChildNode2() .getName() ) + ")"; } // only the values in the lower triangle are used. // !matrix values will be changed! private final void reset( final BasicSymmetricalDistanceMatrix distances ) { _n = distances.getSize(); _d = distances; _r = new double[ _n ]; _mappings = new int[ _n ]; _rev_mappings = new int[ _n ]; _d_values = _d.getValues(); _s = new S(); _s.initialize( distances ); initExternalNodes(); System.out.println(); printM(); System.out.println( "----------------------------------------------------------------------------------" ); System.out.println(); System.out.println(); } final private void printM() { for( int j = 0; j < _d_values.length; ++j ) { System.out.print( _external_nodes[ j ] ); System.out.print( "\t\t" ); for( int i = 0; i < _d_values[ j ].length; ++i ) { System.out.print( DF.format( _d_values[ i ][ j ] ) ); System.out.print( " " ); } System.out.println(); } for( int j = 0; j < _n; ++j ) { System.out.print( getExternalPhylogenyNode( j ) ); System.out.print( "\t\t" ); for( int i = 0; i < _n; ++i ) { System.out.print( DF.format( _d_values[ _mappings[ i ] ][ _mappings[ j ] ] ) ); System.out.print( " " ); } System.out.print( "\t\t" ); for( final Entry> entry : _s.getSentrySet( _mappings[ j ] ) ) { System.out.print( DF.format( ( double ) entry.getKey() / S.FACTOR ) + "=" ); boolean first = true; for( final int v : entry.getValue() ) { if ( !first ) { System.out.print( "," ); } first = false; System.out.print( v ); } System.out.print( " " ); } System.out.println(); } } private final double updateM() { calculateNetDivergences(); Double min_m = Double.MAX_VALUE; _min_i = -1; _min_j = -1; final int n_minus_2 = _n - 2; printM(); for( int j = 1; j < _n; ++j ) { final double r_j = _r[ j ]; final int m_j = _mappings[ j ]; System.out.print( "j=" + j + " mj=" + m_j + ": " ); for( final Entry> entry : _s.getSentrySet( m_j ) ) { for( final int sorted_i : entry.getValue() ) { System.out.print( sorted_i + " " ); System.out.print( "(" + DF.format( getDvalueUnmapped( sorted_i, m_j ) ) + ") " ); final double m = getDvalueUnmapped( sorted_i, m_j ) - ( ( _r[ _rev_mappings[ sorted_i ] ] + r_j ) / n_minus_2 ); if ( ( m < min_m ) ) { _d_min = getDvalueUnmapped( sorted_i, m_j ); min_m = m; _min_i = sorted_i; _min_j = j; } } } System.out.println(); for( final Entry> entry : _s.getSentrySet( m_j ) ) { for( final int sorted_i : entry.getValue() ) { System.out.print( sorted_i ); System.out.print( "->" ); System.out.print( DF.format( _r[ sorted_i ] ) ); System.out.print( " " ); } } System.out.println(); /* for( int i = 0; i < j; ++i ) { final double m = getDvalue( i, j ) - ( ( _r[ i ] + r_j ) / n_minus_2 ); if ( m < min ) { min = m; _d_min = getDvalue( i, j ); _min_i = i; _min_j = j; } }*/ } System.out.println(); return min_m; } // otu2 will, in effect, be "deleted" from the matrix. private final void updateMappings( final int otu2 ) { for( int i = otu2; i < ( _mappings.length - 1 ); ++i ) { System.out.print( _mappings[ i ] ); _mappings[ i ] = _mappings[ i + 1 ]; System.out.println( "----->" + _mappings[ i ] ); } for( int i = 0; i < _mappings.length; ++i ) { System.out.println( i + "-->" + _mappings[ i ] ); } for( int i = 0; i < _n; ++i ) { _rev_mappings[ _mappings[ i ] ] = i; } } public final static NeighborJoiningR createInstance() { return new NeighborJoiningR(); } public final static NeighborJoiningR createInstance( final boolean verbose, final int maximum_fraction_digits_for_distances ) { return new NeighborJoiningR( verbose, maximum_fraction_digits_for_distances ); } }