// $Id: // FORESTER -- software libraries and applications // for evolutionary biology research and applications. // // Copyright (C) 2014 Christian M. Zmasek // All rights reserved // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA // // Contact: phylosoft @ gmail . com // WWW: https://sites.google.com/site/cmzmasek/home/software/forester package org.forester.evoinference.distance; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.List; import java.util.Map.Entry; import org.forester.evoinference.matrix.distance.DistanceMatrix; import org.forester.phylogeny.Phylogeny; import org.forester.phylogeny.PhylogenyNode; import org.forester.util.ForesterUtil; public final class NeighborJoiningR { private final static DecimalFormat DF = new DecimalFormat( "0.00000" ); private DistanceMatrix _d; private double[][] _d_values; private final DecimalFormat _df; private PhylogenyNode[] _external_nodes; private int[] _mappings; private int _n; private double[] _r; private final boolean _verbose; private int _min_i; private int _min_j; private Sarray _s; private double _d_min; //TODO remove me private int[] _rev_mappings; private double _umax; private double _rmax; private NeighborJoiningR() { _verbose = false; _df = null; } private NeighborJoiningR( final boolean verbose, final int maximum_fraction_digits_for_distances ) { if ( ( maximum_fraction_digits_for_distances < 1 ) || ( maximum_fraction_digits_for_distances > 9 ) ) { throw new IllegalArgumentException( "maximum fraction digits for distances is out of range: " + maximum_fraction_digits_for_distances ); } _verbose = verbose; _df = new DecimalFormat(); _df.setMaximumFractionDigits( maximum_fraction_digits_for_distances ); _df.setRoundingMode( RoundingMode.HALF_UP ); } public final Phylogeny execute( final DistanceMatrix distance ) { reset( distance ); final Phylogeny phylogeny = new Phylogeny(); while ( _n > 2 ) { if ( _verbose ) { System.out.println( "N=" + _n ); System.out.println(); } // Calculates the minimal distance. // If more than one minimal distances, always the first found is used updateM(); final int otu1 = _min_i; final int otu2 = _min_j; //if ( _verbose ) { // System.out.println( _min_i + " " + _min_j + " => " + DF.format( m ) + " (" + DF.format( _d_min ) + ")" ); // It is a condition that otu1 < otu2. //System.out.println( "mapped 1 " + _mappings[ otu1 ] ); // System.out.println( "mapped otu 2 " + _mappings[ otu2 ] ); // } final PhylogenyNode node = new PhylogenyNode(); //final double d = getDvalueUnmapped( otu1, _mappings[ otu2 ] ); final double d = _d_values[ otu1 ][ _mappings[ otu2 ] ]; final double d1 = ( d / 2 ) + ( ( _r[ _rev_mappings[ otu1 ] ] - _r[ otu2 ] ) / ( 2 * ( _n - 2 ) ) ); final double d2 = d - d1; if ( _df == null ) { _external_nodes[ otu1 ].setDistanceToParent( d1 ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( d2 ); } else { // yes, yes, slow but only grows with n (and not n^2 or worse)... _external_nodes[ otu1 ].setDistanceToParent( Double.parseDouble( _df.format( d1 ) ) ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( Double.parseDouble( _df.format( d2 ) ) ); } node.addAsChild( _external_nodes[ otu1 ] ); node.addAsChild( getExternalPhylogenyNode( otu2 ) ); if ( _verbose ) { printProgress( otu1, otu2, node ); } if ( _verbose ) { System.out.println( "otu1=" + otu1 ); System.out.println( "otu2=" + otu2 ); } calculateDistancesFromNewNode( otu1, otu2, d ); // _external_nodes[ _mappings[ otu1 ] ] = node; _external_nodes[ otu1 ] = node; updateMappings( otu2 ); --_n; if ( _verbose ) { System.out.println( "" ); System.out .println( "----------------------------------------------------------------------------------" ); System.out.println( "" ); } } final double d = getDvalue( 0, 1 ) / 2; if ( _df == null ) { getExternalPhylogenyNode( 0 ).setDistanceToParent( d ); getExternalPhylogenyNode( 1 ).setDistanceToParent( d ); } else { final double dd = Double.parseDouble( _df.format( d ) ); getExternalPhylogenyNode( 0 ).setDistanceToParent( dd ); getExternalPhylogenyNode( 1 ).setDistanceToParent( dd ); } final PhylogenyNode root = new PhylogenyNode(); root.addAsChild( getExternalPhylogenyNode( 0 ) ); root.addAsChild( getExternalPhylogenyNode( 1 ) ); if ( _verbose ) { printProgress( 0, 1, root ); } phylogeny.setRoot( root ); phylogeny.setRooted( false ); return phylogeny; } public final List execute( final List distances_list ) { final List pl = new ArrayList(); for( final DistanceMatrix distances : distances_list ) { pl.add( execute( distances ) ); } return pl; } private final void calculateDistancesFromNewNode( final int otu1, final int otu2, final double d ) { for( int j = 0; j < _n; ++j ) { if ( ( j == otu2 ) || ( j == _rev_mappings[ otu1 ] ) ) { continue; } updateDvalue( otu1, otu2, j, d ); } if ( _verbose ) { System.out.println(); } } private final void updateDvalue( final int otu1, final int otu2, final int j, final double d ) { final int mj = _mappings[ j ]; // final double new_d = ( getDvalueUnmapped( otu1, _mappings[ j ] ) + getDvalue( j, otu2 ) - d ) / 2; // System.out.println( "\nnew d value: " + DF.format( new_d ) ); if ( otu1 < mj ) { _s.removePairing( _d_values[ otu1 ][ mj ], otu1, mj ); } else { _s.removePairing( _d_values[ mj ][ otu1 ], mj, otu1 ); } if ( _mappings[ otu2 ] < mj ) { _s.removePairing( getDvalue( j, otu2 ), _mappings[ otu2 ], mj ); } else { _s.removePairing( getDvalue( j, otu2 ), mj, _mappings[ otu2 ] ); } double new_d; if ( otu1 < mj ) { new_d = ( ( _d_values[ otu1 ][ mj ] + getDvalue( j, otu2 ) ) - d ) / 2; _s.addPairing( new_d, otu1, mj ); _d_values[ otu1 ][ mj ] = new_d; } else { new_d = ( ( _d_values[ mj ][ otu1 ] + getDvalue( j, otu2 ) ) - d ) / 2; _s.addPairing( new_d, mj, otu1 ); _d_values[ mj ][ otu1 ] = new_d; } } private double getDvalue( final int i, final int j ) { if ( i < j ) { return _d_values[ _mappings[ i ] ][ _mappings[ j ] ]; } return _d_values[ _mappings[ j ] ][ _mappings[ i ] ]; } private final void calculateNetDivergences() { _rmax = -Double.MAX_VALUE; for( int i = 0; i < _n; ++i ) { _r[ i ] = calculateNetDivergence( i ); if ( _r[ i ] > _rmax ) { _rmax = _r[ i ]; } } } private double calculateNetDivergence( final int i ) { float d = 0; for( int n = 0; n < _n; ++n ) { if ( i != n ) { d += getDvalue( n, i ); } } return d; } private final PhylogenyNode getExternalPhylogenyNode( final int i ) { return _external_nodes[ _mappings[ i ] ]; } private final void initExternalNodes() { _external_nodes = new PhylogenyNode[ _n ]; String id; for( int i = 0; i < _n; ++i ) { _external_nodes[ i ] = new PhylogenyNode(); id = _d.getIdentifier( i ); if ( id != null ) { _external_nodes[ i ].setName( id ); } else { _external_nodes[ i ].setName( Integer.toString( i ) ); } _mappings[ i ] = i; _rev_mappings[ i ] = i; } } private final void printProgress( final int otu1, final int otu2, final PhylogenyNode node ) { System.out.println( "Node " + printProgressNodeToString( _external_nodes[ otu1 ] ) + " joins " + ( printProgressNodeToString( getExternalPhylogenyNode( otu2 ) ) ) + " [resulting in node " + ( printProgressNodeToString( node ) ) + "]" ); } private final String printProgressNodeToString( final PhylogenyNode n ) { if ( n.isExternal() ) { if ( ForesterUtil.isEmpty( n.getName() ) ) { return Long.toString( n.getId() ); } return n.getName(); } return n.getId() + " (" + ( ForesterUtil.isEmpty( n.getChildNode1().getName() ) ? n.getChildNode1().getId() : n.getChildNode1() .getName() ) + "+" + ( ForesterUtil.isEmpty( n.getChildNode2().getName() ) ? n.getChildNode2().getId() : n.getChildNode2() .getName() ) + ")"; } // only the values in the lower triangle are used. // !matrix values will be changed! private final void reset( final DistanceMatrix distances ) { _n = distances.getSize(); _d = distances; _r = new double[ _n ]; _mappings = new int[ _n ]; _rev_mappings = new int[ _n ]; _d_values = distances.getValues(); _s = new Sarray(); _s.initialize( distances ); initExternalNodes(); if ( _verbose ) { System.out.println(); printM(); System.out.println( "----------------------------------------------------------------------------------" ); System.out.println(); System.out.println(); } } final private void printM() { for( int j = 0; j < _d_values.length; ++j ) { System.out.print( _external_nodes[ j ] ); System.out.print( "\t\t" ); for( int i = 0; i < _d_values[ j ].length; ++i ) { System.out.print( DF.format( _d_values[ i ][ j ] ) ); System.out.print( " " ); } System.out.println(); } for( int j = 0; j < _n; ++j ) { System.out.print( getExternalPhylogenyNode( j ) ); System.out.print( "\t\t" ); for( int i = 0; i < _n; ++i ) { System.out.print( DF.format( _d_values[ _mappings[ i ] ][ _mappings[ j ] ] ) ); System.out.print( " " ); } System.out.print( "\t\t" ); for( final Entry entry : _s.getSentrySet( _mappings[ j ] ) ) { System.out.print( DF.format( ( double ) entry.getKey() / Sarray.FACTOR ) + "=" ); boolean first = true; for( final int v : entry.getValue() ) { if ( !first ) { System.out.print( "," ); } first = false; System.out.print( v ); } System.out.print( " " ); } System.out.println(); } } private final void updateM() { calculateNetDivergences(); Double min_m = Double.MAX_VALUE; _min_i = -1; _min_j = -1; final int n_minus_2 = _n - 2; if ( _verbose ) { printM(); } // X: for( int j = 1; j < _n; ++j ) { final double r_j = _r[ j ]; final int m_j = _mappings[ j ]; for( final Entry entry : _s.getSentrySet( m_j ) ) { for( final int sorted_i : entry.getValue() ) { final double m = _d_values[ sorted_i ][ m_j ] - ( ( _r[ _rev_mappings[ sorted_i ] ] + r_j ) / n_minus_2 ); if ( ( m < min_m ) ) { min_m = m; _min_i = sorted_i; _min_j = j; } } continue X; } } // J: for( int j = 1; j < _n; ++j ) { //System.out.println( "~~~~~~~~~~~~~ min_m=" + min_m ); final double r_j = _r[ j ]; final int m_j = _mappings[ j ]; boolean first = true; for( final Entry entry : _s.getSentrySet( m_j ) ) { if ( first ) { first = false; continue; } for( final int sorted_i : entry.getValue() ) { final double d = _d_values[ sorted_i ][ m_j ]; if ( ( d - ( ( _umax + r_j ) / n_minus_2 ) ) > min_m ) { continue J; } final double m = d - ( ( _r[ _rev_mappings[ sorted_i ] ] + r_j ) / n_minus_2 ); if ( ( m < min_m ) ) { min_m = m; _min_i = sorted_i; _min_j = j; } } } if ( _verbose ) { System.out.println(); for( final Entry entry : _s.getSentrySet( m_j ) ) { for( final int sorted_i : entry.getValue() ) { System.out.print( sorted_i ); System.out.print( "->" ); System.out.print( DF.format( _r[ sorted_i ] ) ); System.out.print( " " ); } } System.out.println(); } } if ( _verbose ) { System.out.println(); } } // otu2 will, in effect, be "deleted" from the matrix. private final void updateMappings( final int otu2 ) { for( int i = otu2; i < ( _mappings.length - 1 ); ++i ) { //System.out.print( _mappings[ i ] ); _mappings[ i ] = _mappings[ i + 1 ]; //System.out.println( "----->" + _mappings[ i ] ); } // for( int i = 0; i < _mappings.length; ++i ) { // System.out.println( i + "-->" + _mappings[ i ] ); // } for( int i = 0; i < _n; ++i ) { _rev_mappings[ _mappings[ i ] ] = i; } } public final static NeighborJoiningR createInstance() { return new NeighborJoiningR(); } public final static NeighborJoiningR createInstance( final boolean verbose, final int maximum_fraction_digits_for_distances ) { return new NeighborJoiningR( verbose, maximum_fraction_digits_for_distances ); } }