// $Id: // FORESTER -- software libraries and applications // for evolutionary biology research and applications. // // Copyright (C) 2014 Christian M. Zmasek // All rights reserved // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA // // Contact: phylosoft @ gmail . com // WWW: https://sites.google.com/site/cmzmasek/home/software/forester package org.forester.evoinference.distance; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.List; import java.util.Map.Entry; import java.util.SortedSet; import org.forester.evoinference.matrix.distance.BasicSymmetricalDistanceMatrix; import org.forester.phylogeny.Phylogeny; import org.forester.phylogeny.PhylogenyNode; import org.forester.util.ForesterUtil; public final class NeighborJoiningR { private final static DecimalFormat DF = new DecimalFormat( "0.00" ); private BasicSymmetricalDistanceMatrix _d; private double[][] _d_values; private final DecimalFormat _df; private PhylogenyNode[] _external_nodes; private int[] _mappings; private int _n; private double[] _r; private final boolean _verbose; private int _min_i; private int _min_j; private S _s; private double _d_min; //TODO remove me private NeighborJoiningR() { _verbose = false; _df = null; } private NeighborJoiningR( final boolean verbose, final int maximum_fraction_digits_for_distances ) { if ( ( maximum_fraction_digits_for_distances < 1 ) || ( maximum_fraction_digits_for_distances > 9 ) ) { throw new IllegalArgumentException( "maximum fraction digits for distances is out of range: " + maximum_fraction_digits_for_distances ); } _verbose = verbose; _df = new DecimalFormat(); _df.setMaximumFractionDigits( maximum_fraction_digits_for_distances ); _df.setRoundingMode( RoundingMode.HALF_UP ); } public final Phylogeny execute( final BasicSymmetricalDistanceMatrix distance ) { reset( distance ); final Phylogeny phylogeny = new Phylogeny(); while ( _n > 2 ) { System.out.println( "N=" + _n ); System.out.println(); // Calculates the minimal distance. // If more than one minimal distances, always the first found is used final double m = updateM(); final int otu1 = _min_i; final int otu2 = _min_j; System.out.println( _min_i + " " + _min_j + " => " + DF.format( m ) + " (" + DF.format( _d_min ) + ")" ); // It is a condition that otu1 < otu2. //for( int j = 0; j < _s.size(); ++j ) { _s.removePairing( _d_min, _min_i, 1 ); // } final PhylogenyNode node = new PhylogenyNode(); final double d = getDvalue( otu1, otu2 ); final double d1 = ( d / 2 ) + ( ( _r[ otu1 ] - _r[ otu2 ] ) / ( 2 * ( _n - 2 ) ) ); final double d2 = d - d1; if ( _df == null ) { getExternalPhylogenyNode( otu1 ).setDistanceToParent( d1 ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( d2 ); } else { // yes, yes, slow but only grows with n (and not n^2 or worse)... getExternalPhylogenyNode( otu1 ).setDistanceToParent( Double.parseDouble( _df.format( d1 ) ) ); getExternalPhylogenyNode( otu2 ).setDistanceToParent( Double.parseDouble( _df.format( d2 ) ) ); } node.addAsChild( getExternalPhylogenyNode( otu1 ) ); node.addAsChild( getExternalPhylogenyNode( otu2 ) ); if ( _verbose ) { printProgress( otu1, otu2 ); } calculateDistancesFromNewNode( otu1, otu2, d ); _external_nodes[ _mappings[ otu1 ] ] = node; updateMappings( otu2 ); --_n; System.out.println( "-------------------------------------------------------------" ); System.out.println( "" ); } final double d = getDvalue( 0, 1 ) / 2; if ( _df == null ) { getExternalPhylogenyNode( 0 ).setDistanceToParent( d ); getExternalPhylogenyNode( 1 ).setDistanceToParent( d ); } else { final double dd = Double.parseDouble( _df.format( d ) ); getExternalPhylogenyNode( 0 ).setDistanceToParent( dd ); getExternalPhylogenyNode( 1 ).setDistanceToParent( dd ); } final PhylogenyNode root = new PhylogenyNode(); root.addAsChild( getExternalPhylogenyNode( 0 ) ); root.addAsChild( getExternalPhylogenyNode( 1 ) ); if ( _verbose ) { printProgress( 0, 1 ); } phylogeny.setRoot( root ); phylogeny.setRooted( false ); return phylogeny; } public final List execute( final List distances_list ) { final List pl = new ArrayList(); for( final BasicSymmetricalDistanceMatrix distances : distances_list ) { pl.add( execute( distances ) ); } return pl; } private final void calculateDistancesFromNewNode( final int otu1, final int otu2, final double d ) { for( int i = 0; i < _n; ++i ) { if ( ( i == otu1 ) || ( i == otu2 ) ) { continue; } updateDvalue( otu1, otu2, i, d ); } } private final void updateDvalue( final int otu1, final int otu2, final int i, final double d ) { final double new_d = ( getDvalue( otu1, i ) + getDvalue( i, otu2 ) - d ) / 2; _s.addPairing( new_d, otu1, i ); setDvalue( otu1, i, new_d ); } private void setDvalue( final int i, final int j, final double d ) { if ( i < j ) { _d_values[ _mappings[ i ] ][ _mappings[ j ] ] = d; } _d_values[ _mappings[ j ] ][ _mappings[ i ] ] = d; } private double getDvalue( final int i, final int j ) { if ( i < j ) { return _d_values[ _mappings[ i ] ][ _mappings[ j ] ]; } return _d_values[ _mappings[ j ] ][ _mappings[ i ] ]; } private double getDvalueUnmapped( final int i, final int j ) { if ( i < j ) { return _d_values[ i ][ j ]; } return _d_values[ j ][ i ]; } private final void calculateNetDivergences() { for( int i = 0; i < _n; ++i ) { _r[ i ] = calculateNetDivergence( i ); } } private double calculateNetDivergence( final int i ) { double d = 0; for( int n = 0; n < _n; ++n ) { if ( i != n ) { d += getDvalue( n, i ); } } return d; } private final PhylogenyNode getExternalPhylogenyNode( final int i ) { return _external_nodes[ _mappings[ i ] ]; } private final void initExternalNodes() { _external_nodes = new PhylogenyNode[ _n ]; String id; for( int i = 0; i < _n; ++i ) { _external_nodes[ i ] = new PhylogenyNode(); id = _d.getIdentifier( i ); if ( id != null ) { _external_nodes[ i ].setName( id ); } else { _external_nodes[ i ].setName( Integer.toString( i ) ); } _mappings[ i ] = i; } } private final void printProgress( final int otu1, final int otu2 ) { System.out.println( "Node " + printProgressNodeToString( getExternalPhylogenyNode( otu1 ) ) + " joins " + ( printProgressNodeToString( getExternalPhylogenyNode( otu2 ) ) ) ); } private final String printProgressNodeToString( final PhylogenyNode n ) { if ( n.isExternal() ) { if ( ForesterUtil.isEmpty( n.getName() ) ) { return Long.toString( n.getId() ); } return n.getName(); } return n.getId() + " (" + ( ForesterUtil.isEmpty( n.getChildNode1().getName() ) ? n.getChildNode1().getId() : n.getChildNode1() .getName() ) + "+" + ( ForesterUtil.isEmpty( n.getChildNode2().getName() ) ? n.getChildNode2().getId() : n.getChildNode2() .getName() ) + ")"; } // only the values in the lower triangle are used. // !matrix values will be changed! private final void reset( final BasicSymmetricalDistanceMatrix distances ) { _n = distances.getSize(); _d = distances; _r = new double[ _n ]; _mappings = new int[ _n ]; _d_values = _d.getValues(); _s = new S(); _s.initialize( distances ); initExternalNodes(); printM(); } final private void printM() { for( int j = 1; j < _n; ++j ) { for( int i = 0; i < _n; ++i ) { System.out.print( DF.format( _d_values[ _mappings[ i ] ][ _mappings[ j ] ] ) ); System.out.print( " " ); } System.out.print( " " ); for( final Entry> entry : _s.getSentrySet( _mappings[ j ] ) ) { final double key = entry.getKey(); final SortedSet value = entry.getValue(); System.out.print( DF.format( key / S.FACTOR ) + "=" ); boolean first = true; for( final Integer v : value ) { if ( !first ) { System.out.print( "," ); } first = false; System.out.print( v ); } System.out.print( " " ); } System.out.println(); } } private final double updateM() { printM(); calculateNetDivergences(); Double min = Double.MAX_VALUE; _min_i = -1; _min_j = -1; final int n_minus_2 = _n - 2; for( int j = 1; j < _n; ++j ) { final double r_j = _r[ j ]; final int m_j = _mappings[ j ]; int counter = 0; int counter_all = 0; for( final Entry> entry : _s.getSentrySet( m_j ) ) { for( final int sorted_i : entry.getValue() ) { //if ( counter_all >= j ) { // break X; //} if ( _mappings[ counter ] == counter_all ) { System.out.print( sorted_i + " " ); System.out.print( "(" + DF.format( getDvalue( sorted_i, j ) ) + ") " ); final double m = getDvalue( sorted_i, j ) - ( ( _r[ sorted_i ] + r_j ) / n_minus_2 ); if ( ( m < min ) && ( sorted_i != j ) ) { _d_min = getDvalue( sorted_i, j ); min = m; _min_i = sorted_i; _min_j = j; } ++counter; } ++counter_all; } } System.out.println(); /* for( int i = 0; i < j; ++i ) { final double m = getDvalue( i, j ) - ( ( _r[ i ] + r_j ) / n_minus_2 ); if ( m < min ) { min = m; _d_min = getDvalue( i, j ); _min_i = i; _min_j = j; } }*/ } System.out.println(); return min; } // otu2 will, in effect, be "deleted" from the matrix. private final void updateMappings( final int otu2 ) { for( int i = otu2; i < ( _mappings.length - 1 ); ++i ) { _mappings[ i ] = _mappings[ i + 1 ]; } } public final static NeighborJoiningR createInstance() { return new NeighborJoiningR(); } public final static NeighborJoiningR createInstance( final boolean verbose, final int maximum_fraction_digits_for_distances ) { return new NeighborJoiningR( verbose, maximum_fraction_digits_for_distances ); } }