/* * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package intervalstore.nonc; import intervalstore.api.IntervalI; /** * A dual pivot quicksort for int[] where the int is a pointer to something for * which the value needs to be checked. This class is not used; it was just an * idea I was trying. But it is sort of cool, so I am keeping it in the package * for possible future use. * * Adapted from Java 7 java.util.DualPivotQuicksort -- int[] only. The only * difference is that wherever an a[] value is compared, we use val(a[i]) * instead of a[i] itself. Pretty straightforward. Could be adapted for general * use. Why didn't they do this in Java? * * val(i) is just a hack here, of course. A more general implementation might * use a Function call. * * Just thought it was cool that you can do this. * * @author Bob Hanson 2019.09.02 * */ class IntervalEndSorter { private IntervalI[] intervals; private int val(int i) { return intervals[i].getEnd(); } /* * Tuning parameters. */ /** * The maximum number of runs in merge sort. */ private static final int MAX_RUN_COUNT = 67; /** * The maximum length of run in merge sort. */ private static final int MAX_RUN_LENGTH = 33; /** * If the length of an array to be sorted is less than this constant, * Quicksort is used in preference to merge sort. */ private static final int QUICKSORT_THRESHOLD = 286; /** * If the length of an array to be sorted is less than this constant, * insertion sort is used in preference to Quicksort. */ private static final int INSERTION_SORT_THRESHOLD = 47; /* * Sorting methods for seven primitive types. */ /** * Sorts the specified range of the array using the given workspace array * slice if possible for merging * * @param a * the array to be sorted * @param left * the index of the first element, inclusive, to be sorted * @param right * the index of the last element, inclusive, to be sorted * @param work * a workspace array (slice) * @param workBase * origin of usable space in work array * @param workLen * usable size of work array */ void sort(int[] a, IntervalI[] intervals, int len) { this.intervals = intervals; int left = 0, right = len - 1; // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { switch (Integer.signum(val(a[k + 1]) - val(a[k]))) { case 1: // ascending while (++k <= right && val(a[k - 1]) <= val(a[k])) ; break; case -1: // descending while (++k <= right && val(a[k - 1]) >= val(a[k])) ; for (int lo = run[count] - 1, hi = k; ++lo < --hi;) { int t = a[lo]; a[lo] = a[hi]; a[hi] = t; } break; default: // equal for (int m = MAX_RUN_LENGTH; ++k <= right && val(a[k - 1]) == val(a[k]);) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases // Implementation note: variable "right" is increased by 1. if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } // Determine alternation base for merge byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1) ; // Use or create temporary array b for merging int[] b; // temp array; alternates with a int ao, bo; // array offsets from 'left' int blen = right - left; // space needed for b int[] work = new int[blen]; int workBase = 0; if (odd == 0) { System.arraycopy(a, left, work, workBase, blen); b = a; bo = 0; a = work; ao = workBase - left; } else { b = work; ao = 0; bo = workBase - left; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && val(a[p + ao]) <= val(a[q + ao])) { b[i + bo] = a[p++ + ao]; } else { b[i + bo] = a[q++ + ao]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i + bo] = a[i + ao]) ; run[++last] = right; } int[] t = a; a = b; b = t; int o = ao; ao = bo; bo = o; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a * the array to be sorted * @param left * the index of the first element, inclusive, to be sorted * @param right * the index of the last element, inclusive, to be sorted * @param leftmost * indicates if this part is the leftmost in the range */ private void sort(int[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { int ai = a[i + 1]; while (val(ai) < val(a[j])) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (val(a[++left]) >= val(a[left - 1])); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { int a1 = a[k], a2 = a[left]; if (val(a1) < val(a2)) { a2 = a1; a1 = a[left]; } while (val(a1) < val(a[--k])) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (val(a2) < val(a[--k])) { a[k + 1] = a[k]; } a[k + 1] = a2; } int last = a[right]; while (val(last) < val(a[--right])) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (val(a[e2]) < val(a[e1])) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (val(a[e3]) < val(a[e2])) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (val(t) < val(a[e1])) { a[e2] = a[e1]; a[e1] = t; } } if (val(a[e4]) < val(a[e3])) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t; int vt = val(t); if (vt < val(a[e2])) { a[e3] = a[e2]; a[e2] = t; if (vt < val(a[e1])) { a[e2] = a[e1]; a[e1] = t; } } } if (val(a[e5]) < val(a[e4])) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; int vt = val(t); if (vt < val(a[e3])) { a[e4] = a[e3]; a[e3] = t; if (vt < val(a[e2])) { a[e3] = a[e2]; a[e2] = t; if (vt < val(a[e1])) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (val(a[e1]) != val(a[e2]) && val(a[e2]) != val(a[e3]) && val(a[e3]) != val(a[e4]) && val(a[e4]) != val(a[e5])) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ int pivot1 = val(a[e2]); int pivot2 = val(a[e4]); int pivot1k = a[e2]; int pivot2k = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (val(a[++less]) < pivot1) ; while (val(a[--great]) > pivot2) ; /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great;) { int ak = a[k]; if (val(ak) < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (val(ak) > pivot2) { // Move a[k] to right part while (val(a[great]) > pivot2) { if (great-- == k) { break outer; } } if (val(a[great]) < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1k; a[right] = a[great + 1]; a[great + 1] = pivot2k; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (val(a[less]) == pivot1) { ++less; } while (val(a[great]) == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great;) { int ak = a[k]; if (val(ak) == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (val(ak) == pivot2) { // Move a[k] to right part while (val(a[great]) == pivot2) { if (great-- == k) { break outer; } } if (val(a[great]) == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1k; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ int pivot = val(a[e3]); /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (val(a[k]) == pivot) { continue; } int ak = a[k]; if (val(ak) < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (val(a[great]) > pivot) { --great; } if (val(a[great]) < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ // So, guess what? // // Actually, we do need a[great] for IntervalStore, // because here, two, the numbers are not necessarily the same item // // a[k] = pivot; a[k] = a[great]; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } }