/*
* Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
* Copyright (C) $$Year-Rel$$ The Jalview Authors
*
* This file is part of Jalview.
*
* Jalview is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Jalview is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Jalview. If not, see .
* The Jalview Authors are detailed in the 'AUTHORS' file.
*/
package jalview.analysis;
import jalview.commands.RemoveGapColCommand;
import jalview.datamodel.AlignedCodon;
import jalview.datamodel.AlignedCodonFrame;
import jalview.datamodel.AlignedCodonFrame.SequenceToSequenceMapping;
import jalview.datamodel.Alignment;
import jalview.datamodel.AlignmentAnnotation;
import jalview.datamodel.AlignmentI;
import jalview.datamodel.DBRefEntry;
import jalview.datamodel.GeneLociI;
import jalview.datamodel.IncompleteCodonException;
import jalview.datamodel.Mapping;
import jalview.datamodel.Sequence;
import jalview.datamodel.SequenceFeature;
import jalview.datamodel.SequenceGroup;
import jalview.datamodel.SequenceI;
import jalview.datamodel.features.SequenceFeatures;
import jalview.io.gff.SequenceOntologyI;
import jalview.schemes.ResidueProperties;
import jalview.util.Comparison;
import jalview.util.DBRefUtils;
import jalview.util.IntRangeComparator;
import jalview.util.MapList;
import jalview.util.MappingUtils;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap;
/**
* grab bag of useful alignment manipulation operations Expect these to be
* refactored elsewhere at some point.
*
* @author jimp
*
*/
public class AlignmentUtils
{
private static final int CODON_LENGTH = 3;
private static final String SEQUENCE_VARIANT = "sequence_variant:";
/*
* the 'id' attribute is provided for variant features fetched from
* Ensembl using its REST service with JSON format
*/
public static final String VARIANT_ID = "id";
/**
* A data model to hold the 'normal' base value at a position, and an optional
* sequence variant feature
*/
static final class DnaVariant
{
final String base;
SequenceFeature variant;
DnaVariant(String nuc)
{
base = nuc;
variant = null;
}
DnaVariant(String nuc, SequenceFeature var)
{
base = nuc;
variant = var;
}
public String getSource()
{
return variant == null ? null : variant.getFeatureGroup();
}
/**
* toString for aid in the debugger only
*/
@Override
public String toString()
{
return base + ":" + (variant == null ? "" : variant.getDescription());
}
}
/**
* given an existing alignment, create a new alignment including all, or up to
* flankSize additional symbols from each sequence's dataset sequence
*
* @param core
* @param flankSize
* @return AlignmentI
*/
public static AlignmentI expandContext(AlignmentI core, int flankSize)
{
List sq = new ArrayList<>();
int maxoffset = 0;
for (SequenceI s : core.getSequences())
{
SequenceI newSeq = s.deriveSequence();
final int newSeqStart = newSeq.getStart() - 1;
if (newSeqStart > maxoffset
&& newSeq.getDatasetSequence().getStart() < s.getStart())
{
maxoffset = newSeqStart;
}
sq.add(newSeq);
}
if (flankSize > -1)
{
maxoffset = Math.min(maxoffset, flankSize);
}
/*
* now add offset left and right to create an expanded alignment
*/
for (SequenceI s : sq)
{
SequenceI ds = s;
while (ds.getDatasetSequence() != null)
{
ds = ds.getDatasetSequence();
}
int s_end = s.findPosition(s.getStart() + s.getLength());
// find available flanking residues for sequence
int ustream_ds = s.getStart() - ds.getStart();
int dstream_ds = ds.getEnd() - s_end;
// build new flanked sequence
// compute gap padding to start of flanking sequence
int offset = maxoffset - ustream_ds;
// padding is gapChar x ( maxoffset - min(ustream_ds, flank)
if (flankSize >= 0)
{
if (flankSize < ustream_ds)
{
// take up to flankSize residues
offset = maxoffset - flankSize;
ustream_ds = flankSize;
}
if (flankSize <= dstream_ds)
{
dstream_ds = flankSize - 1;
}
}
// TODO use Character.toLowerCase to avoid creating String objects?
char[] upstream = new String(ds
.getSequence(s.getStart() - 1 - ustream_ds, s.getStart() - 1))
.toLowerCase().toCharArray();
char[] downstream = new String(
ds.getSequence(s_end - 1, s_end + dstream_ds)).toLowerCase()
.toCharArray();
char[] coreseq = s.getSequence();
char[] nseq = new char[offset + upstream.length + downstream.length
+ coreseq.length];
char c = core.getGapCharacter();
int p = 0;
for (; p < offset; p++)
{
nseq[p] = c;
}
System.arraycopy(upstream, 0, nseq, p, upstream.length);
System.arraycopy(coreseq, 0, nseq, p + upstream.length,
coreseq.length);
System.arraycopy(downstream, 0, nseq,
p + coreseq.length + upstream.length, downstream.length);
s.setSequence(new String(nseq));
s.setStart(s.getStart() - ustream_ds);
s.setEnd(s_end + downstream.length);
}
AlignmentI newAl = new jalview.datamodel.Alignment(
sq.toArray(new SequenceI[0]));
for (SequenceI s : sq)
{
if (s.getAnnotation() != null)
{
for (AlignmentAnnotation aa : s.getAnnotation())
{
aa.adjustForAlignment(); // JAL-1712 fix
newAl.addAnnotation(aa);
}
}
}
newAl.setDataset(core.getDataset());
return newAl;
}
/**
* Returns the index (zero-based position) of a sequence in an alignment, or
* -1 if not found.
*
* @param al
* @param seq
* @return
*/
public static int getSequenceIndex(AlignmentI al, SequenceI seq)
{
int result = -1;
int pos = 0;
for (SequenceI alSeq : al.getSequences())
{
if (alSeq == seq)
{
result = pos;
break;
}
pos++;
}
return result;
}
/**
* Returns a map of lists of sequences in the alignment, keyed by sequence
* name. For use in mapping between different alignment views of the same
* sequences.
*
* @see jalview.datamodel.AlignmentI#getSequencesByName()
*/
public static Map> getSequencesByName(
AlignmentI al)
{
Map> theMap = new LinkedHashMap<>();
for (SequenceI seq : al.getSequences())
{
String name = seq.getName();
if (name != null)
{
List seqs = theMap.get(name);
if (seqs == null)
{
seqs = new ArrayList<>();
theMap.put(name, seqs);
}
seqs.add(seq);
}
}
return theMap;
}
/**
* Build mapping of protein to cDNA alignment. Mappings are made between
* sequences where the cDNA translates to the protein sequence. Any new
* mappings are added to the protein alignment. Returns true if any mappings
* either already exist or were added, else false.
*
* @param proteinAlignment
* @param cdnaAlignment
* @return
*/
public static boolean mapProteinAlignmentToCdna(
final AlignmentI proteinAlignment, final AlignmentI cdnaAlignment)
{
if (proteinAlignment == null || cdnaAlignment == null)
{
return false;
}
Set mappedDna = new HashSet<>();
Set mappedProtein = new HashSet<>();
/*
* First pass - map sequences where cross-references exist. This include
* 1-to-many mappings to support, for example, variant cDNA.
*/
boolean mappingPerformed = mapProteinToCdna(proteinAlignment,
cdnaAlignment, mappedDna, mappedProtein, true);
/*
* Second pass - map sequences where no cross-references exist. This only
* does 1-to-1 mappings and assumes corresponding sequences are in the same
* order in the alignments.
*/
mappingPerformed |= mapProteinToCdna(proteinAlignment, cdnaAlignment,
mappedDna, mappedProtein, false);
return mappingPerformed;
}
/**
* Make mappings between compatible sequences (where the cDNA translation
* matches the protein).
*
* @param proteinAlignment
* @param cdnaAlignment
* @param mappedDna
* a set of mapped DNA sequences (to add to)
* @param mappedProtein
* a set of mapped Protein sequences (to add to)
* @param xrefsOnly
* if true, only map sequences where xrefs exist
* @return
*/
protected static boolean mapProteinToCdna(
final AlignmentI proteinAlignment, final AlignmentI cdnaAlignment,
Set mappedDna, Set mappedProtein,
boolean xrefsOnly)
{
boolean mappingExistsOrAdded = false;
List thisSeqs = proteinAlignment.getSequences();
for (SequenceI aaSeq : thisSeqs)
{
boolean proteinMapped = false;
AlignedCodonFrame acf = new AlignedCodonFrame();
for (SequenceI cdnaSeq : cdnaAlignment.getSequences())
{
/*
* Always try to map if sequences have xref to each other; this supports
* variant cDNA or alternative splicing for a protein sequence.
*
* If no xrefs, try to map progressively, assuming that alignments have
* mappable sequences in corresponding order. These are not
* many-to-many, as that would risk mixing species with similar cDNA
* sequences.
*/
if (xrefsOnly && !AlignmentUtils.haveCrossRef(aaSeq, cdnaSeq))
{
continue;
}
/*
* Don't map non-xrefd sequences more than once each. This heuristic
* allows us to pair up similar sequences in ordered alignments.
*/
if (!xrefsOnly && (mappedProtein.contains(aaSeq)
|| mappedDna.contains(cdnaSeq)))
{
continue;
}
if (mappingExists(proteinAlignment.getCodonFrames(),
aaSeq.getDatasetSequence(), cdnaSeq.getDatasetSequence()))
{
mappingExistsOrAdded = true;
}
else
{
MapList map = mapCdnaToProtein(aaSeq, cdnaSeq);
if (map != null)
{
acf.addMap(cdnaSeq, aaSeq, map);
mappingExistsOrAdded = true;
proteinMapped = true;
mappedDna.add(cdnaSeq);
mappedProtein.add(aaSeq);
}
}
}
if (proteinMapped)
{
proteinAlignment.addCodonFrame(acf);
}
}
return mappingExistsOrAdded;
}
/**
* Answers true if the mappings include one between the given (dataset)
* sequences.
*/
protected static boolean mappingExists(List mappings,
SequenceI aaSeq, SequenceI cdnaSeq)
{
if (mappings != null)
{
for (AlignedCodonFrame acf : mappings)
{
if (cdnaSeq == acf.getDnaForAaSeq(aaSeq))
{
return true;
}
}
}
return false;
}
/**
* Builds a mapping (if possible) of a cDNA to a protein sequence.
*
* - first checks if the cdna translates exactly to the protein
* sequence
* - else checks for translation after removing a STOP codon
* - else checks for translation after removing a START codon
* - if that fails, inspect CDS features on the cDNA sequence
*
* Returns null if no mapping is determined.
*
* @param proteinSeq
* the aligned protein sequence
* @param cdnaSeq
* the aligned cdna sequence
* @return
*/
public static MapList mapCdnaToProtein(SequenceI proteinSeq,
SequenceI cdnaSeq)
{
/*
* Here we handle either dataset sequence set (desktop) or absent (applet).
* Use only the char[] form of the sequence to avoid creating possibly large
* String objects.
*/
final SequenceI proteinDataset = proteinSeq.getDatasetSequence();
char[] aaSeqChars = proteinDataset != null
? proteinDataset.getSequence()
: proteinSeq.getSequence();
final SequenceI cdnaDataset = cdnaSeq.getDatasetSequence();
char[] cdnaSeqChars = cdnaDataset != null ? cdnaDataset.getSequence()
: cdnaSeq.getSequence();
if (aaSeqChars == null || cdnaSeqChars == null)
{
return null;
}
/*
* cdnaStart/End, proteinStartEnd are base 1 (for dataset sequence mapping)
*/
final int mappedLength = CODON_LENGTH * aaSeqChars.length;
int cdnaLength = cdnaSeqChars.length;
int cdnaStart = cdnaSeq.getStart();
int cdnaEnd = cdnaSeq.getEnd();
final int proteinStart = proteinSeq.getStart();
final int proteinEnd = proteinSeq.getEnd();
/*
* If lengths don't match, try ignoring stop codon (if present)
*/
if (cdnaLength != mappedLength && cdnaLength > 2)
{
String lastCodon = String.valueOf(cdnaSeqChars,
cdnaLength - CODON_LENGTH, CODON_LENGTH).toUpperCase();
for (String stop : ResidueProperties.STOP_CODONS)
{
if (lastCodon.equals(stop))
{
cdnaEnd -= CODON_LENGTH;
cdnaLength -= CODON_LENGTH;
break;
}
}
}
/*
* If lengths still don't match, try ignoring start codon.
*/
int startOffset = 0;
if (cdnaLength != mappedLength && cdnaLength > 2
&& String.valueOf(cdnaSeqChars, 0, CODON_LENGTH).toUpperCase()
.equals(ResidueProperties.START))
{
startOffset += CODON_LENGTH;
cdnaStart += CODON_LENGTH;
cdnaLength -= CODON_LENGTH;
}
if (translatesAs(cdnaSeqChars, startOffset, aaSeqChars))
{
/*
* protein is translation of dna (+/- start/stop codons)
*/
MapList map = new MapList(new int[] { cdnaStart, cdnaEnd },
new int[]
{ proteinStart, proteinEnd }, CODON_LENGTH, 1);
return map;
}
/*
* translation failed - try mapping CDS annotated regions of dna
*/
return mapCdsToProtein(cdnaSeq, proteinSeq);
}
/**
* Test whether the given cdna sequence, starting at the given offset,
* translates to the given amino acid sequence, using the standard translation
* table. Designed to fail fast i.e. as soon as a mismatch position is found.
*
* @param cdnaSeqChars
* @param cdnaStart
* @param aaSeqChars
* @return
*/
protected static boolean translatesAs(char[] cdnaSeqChars, int cdnaStart,
char[] aaSeqChars)
{
if (cdnaSeqChars == null || aaSeqChars == null)
{
return false;
}
int aaPos = 0;
int dnaPos = cdnaStart;
for (; dnaPos < cdnaSeqChars.length - 2
&& aaPos < aaSeqChars.length; dnaPos += CODON_LENGTH, aaPos++)
{
String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH);
final String translated = ResidueProperties.codonTranslate(codon);
/*
* allow * in protein to match untranslatable in dna
*/
final char aaRes = aaSeqChars[aaPos];
if ((translated == null || ResidueProperties.STOP.equals(translated))
&& aaRes == '*')
{
continue;
}
if (translated == null || !(aaRes == translated.charAt(0)))
{
// debug
// System.out.println(("Mismatch at " + i + "/" + aaResidue + ": "
// + codon + "(" + translated + ") != " + aaRes));
return false;
}
}
/*
* check we matched all of the protein sequence
*/
if (aaPos != aaSeqChars.length)
{
return false;
}
/*
* check we matched all of the dna except
* for optional trailing STOP codon
*/
if (dnaPos == cdnaSeqChars.length)
{
return true;
}
if (dnaPos == cdnaSeqChars.length - CODON_LENGTH)
{
String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH);
if (ResidueProperties.STOP
.equals(ResidueProperties.codonTranslate(codon)))
{
return true;
}
}
return false;
}
/**
* Align sequence 'seq' to match the alignment of a mapped sequence. Note this
* currently assumes that we are aligning cDNA to match protein.
*
* @param seq
* the sequence to be realigned
* @param al
* the alignment whose sequence alignment is to be 'copied'
* @param gap
* character string represent a gap in the realigned sequence
* @param preserveUnmappedGaps
* @param preserveMappedGaps
* @return true if the sequence was realigned, false if it could not be
*/
public static boolean alignSequenceAs(SequenceI seq, AlignmentI al,
String gap, boolean preserveMappedGaps,
boolean preserveUnmappedGaps)
{
/*
* Get any mappings from the source alignment to the target (dataset)
* sequence.
*/
// TODO there may be one AlignedCodonFrame per dataset sequence, or one with
// all mappings. Would it help to constrain this?
List mappings = al.getCodonFrame(seq);
if (mappings == null || mappings.isEmpty())
{
return false;
}
/*
* Locate the aligned source sequence whose dataset sequence is mapped. We
* just take the first match here (as we can't align like more than one
* sequence).
*/
SequenceI alignFrom = null;
AlignedCodonFrame mapping = null;
for (AlignedCodonFrame mp : mappings)
{
alignFrom = mp.findAlignedSequence(seq, al);
if (alignFrom != null)
{
mapping = mp;
break;
}
}
if (alignFrom == null)
{
return false;
}
alignSequenceAs(seq, alignFrom, mapping, gap, al.getGapCharacter(),
preserveMappedGaps, preserveUnmappedGaps);
return true;
}
/**
* Align sequence 'alignTo' the same way as 'alignFrom', using the mapping to
* match residues and codons. Flags control whether existing gaps in unmapped
* (intron) and mapped (exon) regions are preserved or not. Gaps between
* intron and exon are only retained if both flags are set.
*
* @param alignTo
* @param alignFrom
* @param mapping
* @param myGap
* @param sourceGap
* @param preserveUnmappedGaps
* @param preserveMappedGaps
*/
public static void alignSequenceAs(SequenceI alignTo, SequenceI alignFrom,
AlignedCodonFrame mapping, String myGap, char sourceGap,
boolean preserveMappedGaps, boolean preserveUnmappedGaps)
{
// TODO generalise to work for Protein-Protein, dna-dna, dna-protein
// aligned and dataset sequence positions, all base zero
int thisSeqPos = 0;
int sourceDsPos = 0;
int basesWritten = 0;
char myGapChar = myGap.charAt(0);
int ratio = myGap.length();
int fromOffset = alignFrom.getStart() - 1;
int toOffset = alignTo.getStart() - 1;
int sourceGapMappedLength = 0;
boolean inExon = false;
final int toLength = alignTo.getLength();
final int fromLength = alignFrom.getLength();
StringBuilder thisAligned = new StringBuilder(2 * toLength);
/*
* Traverse the 'model' aligned sequence
*/
for (int i = 0; i < fromLength; i++)
{
char sourceChar = alignFrom.getCharAt(i);
if (sourceChar == sourceGap)
{
sourceGapMappedLength += ratio;
continue;
}
/*
* Found a non-gap character. Locate its mapped region if any.
*/
sourceDsPos++;
// Note mapping positions are base 1, our sequence positions base 0
int[] mappedPos = mapping.getMappedRegion(alignTo, alignFrom,
sourceDsPos + fromOffset);
if (mappedPos == null)
{
/*
* unmapped position; treat like a gap
*/
sourceGapMappedLength += ratio;
// System.err.println("Can't align: no codon mapping to residue "
// + sourceDsPos + "(" + sourceChar + ")");
// return;
continue;
}
int mappedCodonStart = mappedPos[0]; // position (1...) of codon start
int mappedCodonEnd = mappedPos[mappedPos.length - 1]; // codon end pos
StringBuilder trailingCopiedGap = new StringBuilder();
/*
* Copy dna sequence up to and including this codon. Optionally, include
* gaps before the codon starts (in introns) and/or after the codon starts
* (in exons).
*
* Note this only works for 'linear' splicing, not reverse or interleaved.
* But then 'align dna as protein' doesn't make much sense otherwise.
*/
int intronLength = 0;
while (basesWritten + toOffset < mappedCodonEnd
&& thisSeqPos < toLength)
{
final char c = alignTo.getCharAt(thisSeqPos++);
if (c != myGapChar)
{
basesWritten++;
int sourcePosition = basesWritten + toOffset;
if (sourcePosition < mappedCodonStart)
{
/*
* Found an unmapped (intron) base. First add in any preceding gaps
* (if wanted).
*/
if (preserveUnmappedGaps && trailingCopiedGap.length() > 0)
{
thisAligned.append(trailingCopiedGap.toString());
intronLength += trailingCopiedGap.length();
trailingCopiedGap = new StringBuilder();
}
intronLength++;
inExon = false;
}
else
{
final boolean startOfCodon = sourcePosition == mappedCodonStart;
int gapsToAdd = calculateGapsToInsert(preserveMappedGaps,
preserveUnmappedGaps, sourceGapMappedLength, inExon,
trailingCopiedGap.length(), intronLength, startOfCodon);
for (int k = 0; k < gapsToAdd; k++)
{
thisAligned.append(myGapChar);
}
sourceGapMappedLength = 0;
inExon = true;
}
thisAligned.append(c);
trailingCopiedGap = new StringBuilder();
}
else
{
if (inExon && preserveMappedGaps)
{
trailingCopiedGap.append(myGapChar);
}
else if (!inExon && preserveUnmappedGaps)
{
trailingCopiedGap.append(myGapChar);
}
}
}
}
/*
* At end of model aligned sequence. Copy any remaining target sequence, optionally
* including (intron) gaps.
*/
while (thisSeqPos < toLength)
{
final char c = alignTo.getCharAt(thisSeqPos++);
if (c != myGapChar || preserveUnmappedGaps)
{
thisAligned.append(c);
}
sourceGapMappedLength--;
}
/*
* finally add gaps to pad for any trailing source gaps or
* unmapped characters
*/
if (preserveUnmappedGaps)
{
while (sourceGapMappedLength > 0)
{
thisAligned.append(myGapChar);
sourceGapMappedLength--;
}
}
/*
* All done aligning, set the aligned sequence.
*/
alignTo.setSequence(new String(thisAligned));
}
/**
* Helper method to work out how many gaps to insert when realigning.
*
* @param preserveMappedGaps
* @param preserveUnmappedGaps
* @param sourceGapMappedLength
* @param inExon
* @param trailingCopiedGap
* @param intronLength
* @param startOfCodon
* @return
*/
protected static int calculateGapsToInsert(boolean preserveMappedGaps,
boolean preserveUnmappedGaps, int sourceGapMappedLength,
boolean inExon, int trailingGapLength, int intronLength,
final boolean startOfCodon)
{
int gapsToAdd = 0;
if (startOfCodon)
{
/*
* Reached start of codon. Ignore trailing gaps in intron unless we are
* preserving gaps in both exon and intron. Ignore them anyway if the
* protein alignment introduces a gap at least as large as the intronic
* region.
*/
if (inExon && !preserveMappedGaps)
{
trailingGapLength = 0;
}
if (!inExon && !(preserveMappedGaps && preserveUnmappedGaps))
{
trailingGapLength = 0;
}
if (inExon)
{
gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
}
else
{
if (intronLength + trailingGapLength <= sourceGapMappedLength)
{
gapsToAdd = sourceGapMappedLength - intronLength;
}
else
{
gapsToAdd = Math.min(
intronLength + trailingGapLength - sourceGapMappedLength,
trailingGapLength);
}
}
}
else
{
/*
* second or third base of codon; check for any gaps in dna
*/
if (!preserveMappedGaps)
{
trailingGapLength = 0;
}
gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
}
return gapsToAdd;
}
/**
* Realigns the given protein to match the alignment of the dna, using codon
* mappings to translate aligned codon positions to protein residues.
*
* @param protein
* the alignment whose sequences are realigned by this method
* @param dna
* the dna alignment whose alignment we are 'copying'
* @return the number of sequences that were realigned
*/
public static int alignProteinAsDna(AlignmentI protein, AlignmentI dna)
{
if (protein.isNucleotide() || !dna.isNucleotide())
{
System.err.println("Wrong alignment type in alignProteinAsDna");
return 0;
}
List unmappedProtein = new ArrayList<>();
Map> alignedCodons = buildCodonColumnsMap(
protein, dna, unmappedProtein);
return alignProteinAs(protein, alignedCodons, unmappedProtein);
}
/**
* Realigns the given dna to match the alignment of the protein, using codon
* mappings to translate aligned peptide positions to codons.
*
* Always produces a padded CDS alignment.
*
* @param dna
* the alignment whose sequences are realigned by this method
* @param protein
* the protein alignment whose alignment we are 'copying'
* @return the number of sequences that were realigned
*/
public static int alignCdsAsProtein(AlignmentI dna, AlignmentI protein)
{
if (protein.isNucleotide() || !dna.isNucleotide())
{
System.err.println("Wrong alignment type in alignProteinAsDna");
return 0;
}
// todo: implement this
List mappings = protein.getCodonFrames();
int alignedCount = 0;
int width = 0; // alignment width for padding CDS
for (SequenceI dnaSeq : dna.getSequences())
{
if (alignCdsSequenceAsProtein(dnaSeq, protein, mappings,
dna.getGapCharacter()))
{
alignedCount++;
}
width = Math.max(dnaSeq.getLength(), width);
}
int oldwidth;
int diff;
for (SequenceI dnaSeq : dna.getSequences())
{
oldwidth = dnaSeq.getLength();
diff = width - oldwidth;
if (diff > 0)
{
dnaSeq.insertCharAt(oldwidth, diff, dna.getGapCharacter());
}
}
return alignedCount;
}
/**
* Helper method to align (if possible) the dna sequence to match the
* alignment of a mapped protein sequence. This is currently limited to
* handling coding sequence only.
*
* @param cdsSeq
* @param protein
* @param mappings
* @param gapChar
* @return
*/
static boolean alignCdsSequenceAsProtein(SequenceI cdsSeq,
AlignmentI protein, List mappings,
char gapChar)
{
SequenceI cdsDss = cdsSeq.getDatasetSequence();
if (cdsDss == null)
{
System.err
.println("alignCdsSequenceAsProtein needs aligned sequence!");
return false;
}
List dnaMappings = MappingUtils
.findMappingsForSequence(cdsSeq, mappings);
for (AlignedCodonFrame mapping : dnaMappings)
{
SequenceI peptide = mapping.findAlignedSequence(cdsSeq, protein);
if (peptide != null)
{
final int peptideLength = peptide.getLength();
Mapping map = mapping.getMappingBetween(cdsSeq, peptide);
if (map != null)
{
MapList mapList = map.getMap();
if (map.getTo() == peptide.getDatasetSequence())
{
mapList = mapList.getInverse();
}
final int cdsLength = cdsDss.getLength();
int mappedFromLength = MappingUtils.getLength(mapList
.getFromRanges());
int mappedToLength = MappingUtils
.getLength(mapList.getToRanges());
boolean addStopCodon = (cdsLength == mappedFromLength
* CODON_LENGTH + CODON_LENGTH)
|| (peptide.getDatasetSequence()
.getLength() == mappedFromLength - 1);
if (cdsLength != mappedToLength && !addStopCodon)
{
System.err.println(String.format(
"Can't align cds as protein (length mismatch %d/%d): %s",
cdsLength, mappedToLength, cdsSeq.getName()));
}
/*
* pre-fill the aligned cds sequence with gaps
*/
char[] alignedCds = new char[peptideLength * CODON_LENGTH
+ (addStopCodon ? CODON_LENGTH : 0)];
Arrays.fill(alignedCds, gapChar);
/*
* walk over the aligned peptide sequence and insert mapped
* codons for residues in the aligned cds sequence
*/
int copiedBases = 0;
int cdsStart = cdsDss.getStart();
int proteinPos = peptide.getStart() - 1;
int cdsCol = 0;
for (int col = 0; col < peptideLength; col++)
{
char residue = peptide.getCharAt(col);
if (Comparison.isGap(residue))
{
cdsCol += CODON_LENGTH;
}
else
{
proteinPos++;
int[] codon = mapList.locateInTo(proteinPos, proteinPos);
if (codon == null)
{
// e.g. incomplete start codon, X in peptide
cdsCol += CODON_LENGTH;
}
else
{
for (int j = codon[0]; j <= codon[1]; j++)
{
char mappedBase = cdsDss.getCharAt(j - cdsStart);
alignedCds[cdsCol++] = mappedBase;
copiedBases++;
}
}
}
}
/*
* append stop codon if not mapped from protein,
* closing it up to the end of the mapped sequence
*/
if (copiedBases == cdsLength - CODON_LENGTH)
{
for (int i = alignedCds.length - 1; i >= 0; i--)
{
if (!Comparison.isGap(alignedCds[i]))
{
cdsCol = i + 1; // gap just after end of sequence
break;
}
}
for (int i = cdsLength - CODON_LENGTH; i < cdsLength; i++)
{
alignedCds[cdsCol++] = cdsDss.getCharAt(i);
}
}
cdsSeq.setSequence(new String(alignedCds));
return true;
}
}
}
return false;
}
/**
* Builds a map whose key is an aligned codon position (3 alignment column
* numbers base 0), and whose value is a map from protein sequence to each
* protein's peptide residue for that codon. The map generates an ordering of
* the codons, and allows us to read off the peptides at each position in
* order to assemble 'aligned' protein sequences.
*
* @param protein
* the protein alignment
* @param dna
* the coding dna alignment
* @param unmappedProtein
* any unmapped proteins are added to this list
* @return
*/
protected static Map> buildCodonColumnsMap(
AlignmentI protein, AlignmentI dna,
List unmappedProtein)
{
/*
* maintain a list of any proteins with no mappings - these will be
* rendered 'as is' in the protein alignment as we can't align them
*/
unmappedProtein.addAll(protein.getSequences());
List mappings = protein.getCodonFrames();
/*
* Map will hold, for each aligned codon position e.g. [3, 5, 6], a map of
* {dnaSequence, {proteinSequence, codonProduct}} at that position. The
* comparator keeps the codon positions ordered.
*/
Map> alignedCodons = new TreeMap<>(
new CodonComparator());
for (SequenceI dnaSeq : dna.getSequences())
{
for (AlignedCodonFrame mapping : mappings)
{
SequenceI prot = mapping.findAlignedSequence(dnaSeq, protein);
if (prot != null)
{
Mapping seqMap = mapping.getMappingForSequence(dnaSeq);
addCodonPositions(dnaSeq, prot, protein.getGapCharacter(), seqMap,
alignedCodons);
unmappedProtein.remove(prot);
}
}
}
/*
* Finally add any unmapped peptide start residues (e.g. for incomplete
* codons) as if at the codon position before the second residue
*/
// TODO resolve JAL-2022 so this fudge can be removed
int mappedSequenceCount = protein.getHeight() - unmappedProtein.size();
addUnmappedPeptideStarts(alignedCodons, mappedSequenceCount);
return alignedCodons;
}
/**
* Scans for any protein mapped from position 2 (meaning unmapped start
* position e.g. an incomplete codon), and synthesizes a 'codon' for it at the
* preceding position in the alignment
*
* @param alignedCodons
* the codon-to-peptide map
* @param mappedSequenceCount
* the number of distinct sequences in the map
*/
protected static void addUnmappedPeptideStarts(
Map> alignedCodons,
int mappedSequenceCount)
{
// TODO delete this ugly hack once JAL-2022 is resolved
// i.e. we can model startPhase > 0 (incomplete start codon)
List sequencesChecked = new ArrayList<>();
AlignedCodon lastCodon = null;
Map toAdd = new HashMap<>();
for (Entry> entry : alignedCodons
.entrySet())
{
for (Entry sequenceCodon : entry.getValue()
.entrySet())
{
SequenceI seq = sequenceCodon.getKey();
if (sequencesChecked.contains(seq))
{
continue;
}
sequencesChecked.add(seq);
AlignedCodon codon = sequenceCodon.getValue();
if (codon.peptideCol > 1)
{
System.err.println(
"Problem mapping protein with >1 unmapped start positions: "
+ seq.getName());
}
else if (codon.peptideCol == 1)
{
/*
* first position (peptideCol == 0) was unmapped - add it
*/
if (lastCodon != null)
{
AlignedCodon firstPeptide = new AlignedCodon(lastCodon.pos1,
lastCodon.pos2, lastCodon.pos3,
String.valueOf(seq.getCharAt(0)), 0);
toAdd.put(seq, firstPeptide);
}
else
{
/*
* unmapped residue at start of alignment (no prior column) -
* 'insert' at nominal codon [0, 0, 0]
*/
AlignedCodon firstPeptide = new AlignedCodon(0, 0, 0,
String.valueOf(seq.getCharAt(0)), 0);
toAdd.put(seq, firstPeptide);
}
}
if (sequencesChecked.size() == mappedSequenceCount)
{
// no need to check past first mapped position in all sequences
break;
}
}
lastCodon = entry.getKey();
}
/*
* add any new codons safely after iterating over the map
*/
for (Entry startCodon : toAdd.entrySet())
{
addCodonToMap(alignedCodons, startCodon.getValue(),
startCodon.getKey());
}
}
/**
* Update the aligned protein sequences to match the codon alignments given in
* the map.
*
* @param protein
* @param alignedCodons
* an ordered map of codon positions (columns), with sequence/peptide
* values present in each column
* @param unmappedProtein
* @return
*/
protected static int alignProteinAs(AlignmentI protein,
Map> alignedCodons,
List unmappedProtein)
{
/*
* prefill peptide sequences with gaps
*/
int alignedWidth = alignedCodons.size();
char[] gaps = new char[alignedWidth];
Arrays.fill(gaps, protein.getGapCharacter());
Map peptides = new HashMap<>();
for (SequenceI seq : protein.getSequences())
{
if (!unmappedProtein.contains(seq))
{
peptides.put(seq, Arrays.copyOf(gaps, gaps.length));
}
}
/*
* Traverse the codons left to right (as defined by CodonComparator)
* and insert peptides in each column where the sequence is mapped.
* This gives a peptide 'alignment' where residues are aligned if their
* corresponding codons occupy the same columns in the cdna alignment.
*/
int column = 0;
for (AlignedCodon codon : alignedCodons.keySet())
{
final Map columnResidues = alignedCodons
.get(codon);
for (Entry entry : columnResidues.entrySet())
{
char residue = entry.getValue().product.charAt(0);
peptides.get(entry.getKey())[column] = residue;
}
column++;
}
/*
* and finally set the constructed sequences
*/
for (Entry entry : peptides.entrySet())
{
entry.getKey().setSequence(new String(entry.getValue()));
}
return 0;
}
/**
* Populate the map of aligned codons by traversing the given sequence
* mapping, locating the aligned positions of mapped codons, and adding those
* positions and their translation products to the map.
*
* @param dna
* the aligned sequence we are mapping from
* @param protein
* the sequence to be aligned to the codons
* @param gapChar
* the gap character in the dna sequence
* @param seqMap
* a mapping to a sequence translation
* @param alignedCodons
* the map we are building up
*/
static void addCodonPositions(SequenceI dna, SequenceI protein,
char gapChar, Mapping seqMap,
Map> alignedCodons)
{
Iterator codons = seqMap.getCodonIterator(dna, gapChar);
/*
* add codon positions, and their peptide translations, to the alignment
* map, while remembering the first codon mapped
*/
while (codons.hasNext())
{
try
{
AlignedCodon codon = codons.next();
addCodonToMap(alignedCodons, codon, protein);
} catch (IncompleteCodonException e)
{
// possible incomplete trailing codon - ignore
} catch (NoSuchElementException e)
{
// possibly peptide lacking STOP
}
}
}
/**
* Helper method to add a codon-to-peptide entry to the aligned codons map
*
* @param alignedCodons
* @param codon
* @param protein
*/
protected static void addCodonToMap(
Map> alignedCodons,
AlignedCodon codon, SequenceI protein)
{
Map seqProduct = alignedCodons.get(codon);
if (seqProduct == null)
{
seqProduct = new HashMap<>();
alignedCodons.put(codon, seqProduct);
}
seqProduct.put(protein, codon);
}
/**
* Returns true if a cDNA/Protein mapping either exists, or could be made,
* between at least one pair of sequences in the two alignments. Currently,
* the logic is:
*
* - One alignment must be nucleotide, and the other protein
* - At least one pair of sequences must be already mapped, or mappable
* - Mappable means the nucleotide translation matches the protein
* sequence
* - The translation may ignore start and stop codons if present in the
* nucleotide
*
*
* @param al1
* @param al2
* @return
*/
public static boolean isMappable(AlignmentI al1, AlignmentI al2)
{
if (al1 == null || al2 == null)
{
return false;
}
/*
* Require one nucleotide and one protein
*/
if (al1.isNucleotide() == al2.isNucleotide())
{
return false;
}
AlignmentI dna = al1.isNucleotide() ? al1 : al2;
AlignmentI protein = dna == al1 ? al2 : al1;
List mappings = protein.getCodonFrames();
for (SequenceI dnaSeq : dna.getSequences())
{
for (SequenceI proteinSeq : protein.getSequences())
{
if (isMappable(dnaSeq, proteinSeq, mappings))
{
return true;
}
}
}
return false;
}
/**
* Returns true if the dna sequence is mapped, or could be mapped, to the
* protein sequence.
*
* @param dnaSeq
* @param proteinSeq
* @param mappings
* @return
*/
protected static boolean isMappable(SequenceI dnaSeq,
SequenceI proteinSeq, List mappings)
{
if (dnaSeq == null || proteinSeq == null)
{
return false;
}
SequenceI dnaDs = dnaSeq.getDatasetSequence() == null ? dnaSeq
: dnaSeq.getDatasetSequence();
SequenceI proteinDs = proteinSeq.getDatasetSequence() == null
? proteinSeq
: proteinSeq.getDatasetSequence();
for (AlignedCodonFrame mapping : mappings)
{
if (proteinDs == mapping.getAaForDnaSeq(dnaDs))
{
/*
* already mapped
*/
return true;
}
}
/*
* Just try to make a mapping (it is not yet stored), test whether
* successful.
*/
return mapCdnaToProtein(proteinDs, dnaDs) != null;
}
/**
* Finds any reference annotations associated with the sequences in
* sequenceScope, that are not already added to the alignment, and adds them
* to the 'candidates' map. Also populates a lookup table of annotation
* labels, keyed by calcId, for use in constructing tooltips or the like.
*
* @param sequenceScope
* the sequences to scan for reference annotations
* @param labelForCalcId
* (optional) map to populate with label for calcId
* @param candidates
* map to populate with annotations for sequence
* @param al
* the alignment to check for presence of annotations
*/
public static void findAddableReferenceAnnotations(
List sequenceScope, Map labelForCalcId,
final Map> candidates,
AlignmentI al)
{
if (sequenceScope == null)
{
return;
}
/*
* For each sequence in scope, make a list of any annotations on the
* underlying dataset sequence which are not already on the alignment.
*
* Add to a map of { alignmentSequence, }
*/
for (SequenceI seq : sequenceScope)
{
SequenceI dataset = seq.getDatasetSequence();
if (dataset == null)
{
continue;
}
AlignmentAnnotation[] datasetAnnotations = dataset.getAnnotation();
if (datasetAnnotations == null)
{
continue;
}
final List result = new ArrayList<>();
for (AlignmentAnnotation dsann : datasetAnnotations)
{
/*
* Find matching annotations on the alignment. If none is found, then
* add this annotation to the list of 'addable' annotations for this
* sequence.
*/
final Iterable matchedAlignmentAnnotations = al
.findAnnotations(seq, dsann.getCalcId(), dsann.label);
if (!matchedAlignmentAnnotations.iterator().hasNext())
{
result.add(dsann);
if (labelForCalcId != null)
{
labelForCalcId.put(dsann.getCalcId(), dsann.label);
}
}
}
/*
* Save any addable annotations for this sequence
*/
if (!result.isEmpty())
{
candidates.put(seq, result);
}
}
}
/**
* Adds annotations to the top of the alignment annotations, in the same order
* as their related sequences.
*
* @param annotations
* the annotations to add
* @param alignment
* the alignment to add them to
* @param selectionGroup
* current selection group (or null if none)
*/
public static void addReferenceAnnotations(
Map> annotations,
final AlignmentI alignment, final SequenceGroup selectionGroup)
{
for (SequenceI seq : annotations.keySet())
{
for (AlignmentAnnotation ann : annotations.get(seq))
{
AlignmentAnnotation copyAnn = new AlignmentAnnotation(ann);
int startRes = 0;
int endRes = ann.annotations.length;
if (selectionGroup != null)
{
startRes = selectionGroup.getStartRes();
endRes = selectionGroup.getEndRes();
}
copyAnn.restrict(startRes, endRes);
/*
* Add to the sequence (sets copyAnn.datasetSequence), unless the
* original annotation is already on the sequence.
*/
if (!seq.hasAnnotation(ann))
{
seq.addAlignmentAnnotation(copyAnn);
}
// adjust for gaps
copyAnn.adjustForAlignment();
// add to the alignment and set visible
alignment.addAnnotation(copyAnn);
copyAnn.visible = true;
}
}
}
/**
* Set visibility of alignment annotations of specified types (labels), for
* specified sequences. This supports controls like "Show all secondary
* structure", "Hide all Temp factor", etc.
*
* @al the alignment to scan for annotations
* @param types
* the types (labels) of annotations to be updated
* @param forSequences
* if not null, only annotations linked to one of these sequences are
* in scope for update; if null, acts on all sequence annotations
* @param anyType
* if this flag is true, 'types' is ignored (label not checked)
* @param doShow
* if true, set visibility on, else set off
*/
public static void showOrHideSequenceAnnotations(AlignmentI al,
Collection types, List forSequences,
boolean anyType, boolean doShow)
{
AlignmentAnnotation[] anns = al.getAlignmentAnnotation();
if (anns != null)
{
for (AlignmentAnnotation aa : anns)
{
if (anyType || types.contains(aa.label))
{
if ((aa.sequenceRef != null) && (forSequences == null
|| forSequences.contains(aa.sequenceRef)))
{
aa.visible = doShow;
}
}
}
}
}
/**
* Returns true if either sequence has a cross-reference to the other
*
* @param seq1
* @param seq2
* @return
*/
public static boolean haveCrossRef(SequenceI seq1, SequenceI seq2)
{
// Note: moved here from class CrossRef as the latter class has dependencies
// not availability to the applet's classpath
return hasCrossRef(seq1, seq2) || hasCrossRef(seq2, seq1);
}
/**
* Returns true if seq1 has a cross-reference to seq2. Currently this assumes
* that sequence name is structured as Source|AccessionId.
*
* @param seq1
* @param seq2
* @return
*/
public static boolean hasCrossRef(SequenceI seq1, SequenceI seq2)
{
if (seq1 == null || seq2 == null)
{
return false;
}
String name = seq2.getName();
final List xrefs = seq1.getDBRefs();
if (xrefs != null)
{
for (int ix = 0, nx = xrefs.size(); ix < nx; ix++)
{
DBRefEntry xref = xrefs.get(ix);
String xrefName = xref.getSource() + "|" + xref.getAccessionId();
// case-insensitive test, consistent with DBRefEntry.equalRef()
if (xrefName.equalsIgnoreCase(name))
{
return true;
}
}
}
return false;
}
/**
* Constructs an alignment consisting of the mapped (CDS) regions in the given
* nucleotide sequences, and updates mappings to match. The CDS sequences are
* added to the original alignment's dataset, which is shared by the new
* alignment. Mappings from nucleotide to CDS, and from CDS to protein, are
* added to the alignment dataset.
*
* @param dna
* aligned nucleotide (dna or cds) sequences
* @param dataset
* the alignment dataset the sequences belong to
* @param products
* (optional) to restrict results to CDS that map to specified
* protein products
* @return an alignment whose sequences are the cds-only parts of the dna
* sequences (or null if no mappings are found)
*/
public static AlignmentI makeCdsAlignment(SequenceI[] dna,
AlignmentI dataset, SequenceI[] products)
{
if (dataset == null || dataset.getDataset() != null)
{
throw new IllegalArgumentException(
"IMPLEMENTATION ERROR: dataset.getDataset() must be null!");
}
List foundSeqs = new ArrayList<>();
List cdsSeqs = new ArrayList<>();
List mappings = dataset.getCodonFrames();
HashSet productSeqs = null;
if (products != null)
{
productSeqs = new HashSet<>();
for (SequenceI seq : products)
{
productSeqs.add(seq.getDatasetSequence() == null ? seq : seq
.getDatasetSequence());
}
}
/*
* Construct CDS sequences from mappings on the alignment dataset.
* The logic is:
* - find the protein product(s) mapped to from each dna sequence
* - if the mapping covers the whole dna sequence (give or take start/stop
* codon), take the dna as the CDS sequence
* - else search dataset mappings for a suitable dna sequence, i.e. one
* whose whole sequence is mapped to the protein
* - if no sequence found, construct one from the dna sequence and mapping
* (and add it to dataset so it is found if this is repeated)
*/
for (SequenceI dnaSeq : dna)
{
SequenceI dnaDss = dnaSeq.getDatasetSequence() == null ? dnaSeq
: dnaSeq.getDatasetSequence();
List seqMappings = MappingUtils
.findMappingsForSequence(dnaSeq, mappings);
for (AlignedCodonFrame mapping : seqMappings)
{
List mappingsFromSequence = mapping
.getMappingsFromSequence(dnaSeq);
for (Mapping aMapping : mappingsFromSequence)
{
MapList mapList = aMapping.getMap();
if (mapList.getFromRatio() == 1)
{
/*
* not a dna-to-protein mapping (likely dna-to-cds)
*/
continue;
}
/*
* skip if mapping is not to one of the target set of proteins
*/
SequenceI proteinProduct = aMapping.getTo();
if (productSeqs != null && !productSeqs.contains(proteinProduct))
{
continue;
}
/*
* try to locate the CDS from the dataset mappings;
* guard against duplicate results (for the case that protein has
* dbrefs to both dna and cds sequences)
*/
SequenceI cdsSeq = findCdsForProtein(mappings, dnaSeq,
seqMappings, aMapping);
if (cdsSeq != null)
{
if (!foundSeqs.contains(cdsSeq))
{
foundSeqs.add(cdsSeq);
SequenceI derivedSequence = cdsSeq.deriveSequence();
cdsSeqs.add(derivedSequence);
if (!dataset.getSequences().contains(cdsSeq))
{
dataset.addSequence(cdsSeq);
}
}
continue;
}
/*
* didn't find mapped CDS sequence - construct it and add
* its dataset sequence to the dataset
*/
cdsSeq = makeCdsSequence(dnaSeq.getDatasetSequence(), aMapping,
dataset).deriveSequence();
// cdsSeq has a name constructed as CDS|
// will be either the accession for the coding sequence,
// marked in the /via/ dbref to the protein product accession
// or it will be the original nucleotide accession.
SequenceI cdsSeqDss = cdsSeq.getDatasetSequence();
cdsSeqs.add(cdsSeq);
/*
* build the mapping from CDS to protein
*/
List cdsRange = Collections
.singletonList(new int[]
{ cdsSeq.getStart(),
cdsSeq.getLength() + cdsSeq.getStart() - 1 });
MapList cdsToProteinMap = new MapList(cdsRange,
mapList.getToRanges(), mapList.getFromRatio(),
mapList.getToRatio());
if (!dataset.getSequences().contains(cdsSeqDss))
{
/*
* if this sequence is a newly created one, add it to the dataset
* and made a CDS to protein mapping (if sequence already exists,
* CDS-to-protein mapping _is_ the transcript-to-protein mapping)
*/
dataset.addSequence(cdsSeqDss);
AlignedCodonFrame cdsToProteinMapping = new AlignedCodonFrame();
cdsToProteinMapping.addMap(cdsSeqDss, proteinProduct,
cdsToProteinMap);
/*
* guard against duplicating the mapping if repeating this action
*/
if (!mappings.contains(cdsToProteinMapping))
{
mappings.add(cdsToProteinMapping);
}
}
propagateDBRefsToCDS(cdsSeqDss, dnaSeq.getDatasetSequence(),
proteinProduct, aMapping);
/*
* add another mapping from original 'from' range to CDS
*/
AlignedCodonFrame dnaToCdsMapping = new AlignedCodonFrame();
final MapList dnaToCdsMap = new MapList(mapList.getFromRanges(),
cdsRange, 1, 1);
dnaToCdsMapping.addMap(dnaSeq.getDatasetSequence(), cdsSeqDss,
dnaToCdsMap);
if (!mappings.contains(dnaToCdsMapping))
{
mappings.add(dnaToCdsMapping);
}
/*
* transfer dna chromosomal loci (if known) to the CDS
* sequence (via the mapping)
*/
final MapList cdsToDnaMap = dnaToCdsMap.getInverse();
transferGeneLoci(dnaSeq, cdsToDnaMap, cdsSeq);
/*
* add DBRef with mapping from protein to CDS
* (this enables Get Cross-References from protein alignment)
* This is tricky because we can't have two DBRefs with the
* same source and accession, so need a different accession for
* the CDS from the dna sequence
*/
// specific use case:
// Genomic contig ENSCHR:1, contains coding regions for ENSG01,
// ENSG02, ENSG03, with transcripts and products similarly named.
// cannot add distinct dbrefs mapping location on ENSCHR:1 to ENSG01
// JBPNote: ?? can't actually create an example that demonstrates we
// need to
// synthesize an xref.
List primrefs = dnaDss.getPrimaryDBRefs();
for (int ip = 0, np = primrefs.size(); ip < np; ip++)
{
DBRefEntry primRef = primrefs.get(ip);
/*
* create a cross-reference from CDS to the source sequence's
* primary reference and vice versa
*/
String source = primRef.getSource();
String version = primRef.getVersion();
DBRefEntry cdsCrossRef = new DBRefEntry(source, source + ":"
+ version, primRef.getAccessionId());
cdsCrossRef.setMap(new Mapping(dnaDss, new MapList(cdsToDnaMap)));
cdsSeqDss.addDBRef(cdsCrossRef);
dnaSeq.addDBRef(new DBRefEntry(source, version, cdsSeq
.getName(), new Mapping(cdsSeqDss, dnaToCdsMap)));
// problem here is that the cross-reference is synthesized -
// cdsSeq.getName() may be like 'CDS|dnaaccession' or
// 'CDS|emblcdsacc'
// assuming cds version same as dna ?!?
DBRefEntry proteinToCdsRef = new DBRefEntry(source, version,
cdsSeq.getName());
//
proteinToCdsRef.setMap(new Mapping(cdsSeqDss, cdsToProteinMap
.getInverse()));
proteinProduct.addDBRef(proteinToCdsRef);
}
/*
* transfer any features on dna that overlap the CDS
*/
transferFeatures(dnaSeq, cdsSeq, dnaToCdsMap, null,
SequenceOntologyI.CDS);
}
}
}
AlignmentI cds = new Alignment(cdsSeqs.toArray(new SequenceI[cdsSeqs
.size()]));
cds.setDataset(dataset);
return cds;
}
/**
* Tries to transfer gene loci (dbref to chromosome positions) from fromSeq to
* toSeq, mediated by the given mapping between the sequences
*
* @param fromSeq
* @param targetToFrom
* Map
* @param targetSeq
*/
protected static void transferGeneLoci(SequenceI fromSeq,
MapList targetToFrom, SequenceI targetSeq)
{
if (targetSeq.getGeneLoci() != null)
{
// already have - don't override
return;
}
GeneLociI fromLoci = fromSeq.getGeneLoci();
if (fromLoci == null)
{
return;
}
MapList newMap = targetToFrom.traverse(fromLoci.getMapping());
if (newMap != null)
{
targetSeq.setGeneLoci(fromLoci.getSpeciesId(),
fromLoci.getAssemblyId(), fromLoci.getChromosomeId(), newMap);
}
}
/**
* A helper method that finds a CDS sequence in the alignment dataset that is
* mapped to the given protein sequence, and either is, or has a mapping from,
* the given dna sequence.
*
* @param mappings
* set of all mappings on the dataset
* @param dnaSeq
* a dna (or cds) sequence we are searching from
* @param seqMappings
* the set of mappings involving dnaSeq
* @param aMapping
* a transcript-to-peptide mapping
* @return
*/
static SequenceI findCdsForProtein(List mappings,
SequenceI dnaSeq, List seqMappings,
Mapping aMapping)
{
/*
* TODO a better dna-cds-protein mapping data representation to allow easy
* navigation; until then this clunky looping around lists of mappings
*/
SequenceI seqDss = dnaSeq.getDatasetSequence() == null ? dnaSeq
: dnaSeq.getDatasetSequence();
SequenceI proteinProduct = aMapping.getTo();
/*
* is this mapping from the whole dna sequence (i.e. CDS)?
* allowing for possible stop codon on dna but not peptide
*/
int mappedFromLength = MappingUtils
.getLength(aMapping.getMap().getFromRanges());
int dnaLength = seqDss.getLength();
if (mappedFromLength == dnaLength
|| mappedFromLength == dnaLength - CODON_LENGTH)
{
/*
* if sequence has CDS features, this is a transcript with no UTR
* - do not take this as the CDS sequence! (JAL-2789)
*/
if (seqDss.getFeatures().getFeaturesByOntology(SequenceOntologyI.CDS)
.isEmpty())
{
return seqDss;
}
}
/*
* looks like we found the dna-to-protein mapping; search for the
* corresponding cds-to-protein mapping
*/
List mappingsToPeptide = MappingUtils
.findMappingsForSequence(proteinProduct, mappings);
for (AlignedCodonFrame acf : mappingsToPeptide)
{
for (SequenceToSequenceMapping map : acf.getMappings())
{
Mapping mapping = map.getMapping();
if (mapping != aMapping
&& mapping.getMap().getFromRatio() == CODON_LENGTH
&& proteinProduct == mapping.getTo()
&& seqDss != map.getFromSeq())
{
mappedFromLength = MappingUtils
.getLength(mapping.getMap().getFromRanges());
if (mappedFromLength == map.getFromSeq().getLength())
{
/*
* found a 3:1 mapping to the protein product which covers
* the whole dna sequence i.e. is from CDS; finally check the CDS
* is mapped from the given dna start sequence
*/
SequenceI cdsSeq = map.getFromSeq();
// todo this test is weak if seqMappings contains multiple mappings;
// we get away with it if transcript:cds relationship is 1:1
List dnaToCdsMaps = MappingUtils
.findMappingsForSequence(cdsSeq, seqMappings);
if (!dnaToCdsMaps.isEmpty())
{
return cdsSeq;
}
}
}
}
}
return null;
}
/**
* Helper method that makes a CDS sequence as defined by the mappings from the
* given sequence i.e. extracts the 'mapped from' ranges (which may be on
* forward or reverse strand).
*
* @param seq
* @param mapping
* @param dataset
* - existing dataset. We check for sequences that look like the CDS
* we are about to construct, if one exists already, then we will
* just return that one.
* @return CDS sequence (as a dataset sequence)
*/
static SequenceI makeCdsSequence(SequenceI seq, Mapping mapping,
AlignmentI dataset)
{
/*
* construct CDS sequence name as "CDS|" with 'from id' held in the mapping
* if set (e.g. EMBL protein_id), else sequence name appended
*/
String mapFromId = mapping.getMappedFromId();
final String seqId = "CDS|"
+ (mapFromId != null ? mapFromId : seq.getName());
SequenceI newSeq = null;
final MapList maplist = mapping.getMap();
if (maplist.isContiguous() && maplist.isFromForwardStrand())
{
/*
* just a subsequence, keep same dataset sequence
*/
int start = maplist.getFromLowest();
int end = maplist.getFromHighest();
newSeq = seq.getSubSequence(start - 1, end);
newSeq.setName(seqId);
}
else
{
/*
* construct by splicing mapped from ranges
*/
char[] seqChars = seq.getSequence();
List fromRanges = maplist.getFromRanges();
int cdsWidth = MappingUtils.getLength(fromRanges);
char[] newSeqChars = new char[cdsWidth];
int newPos = 0;
for (int[] range : fromRanges)
{
if (range[0] <= range[1])
{
// forward strand mapping - just copy the range
int length = range[1] - range[0] + 1;
System.arraycopy(seqChars, range[0] - 1, newSeqChars, newPos,
length);
newPos += length;
}
else
{
// reverse strand mapping - copy and complement one by one
for (int i = range[0]; i >= range[1]; i--)
{
newSeqChars[newPos++] = Dna.getComplement(seqChars[i - 1]);
}
}
}
newSeq = new Sequence(seqId, newSeqChars, 1, newPos);
}
if (dataset != null)
{
SequenceI[] matches = dataset.findSequenceMatch(newSeq.getName());
if (matches != null)
{
boolean matched = false;
for (SequenceI mtch : matches)
{
if (mtch.getStart() != newSeq.getStart())
{
continue;
}
if (mtch.getEnd() != newSeq.getEnd())
{
continue;
}
if (!Arrays.equals(mtch.getSequence(), newSeq.getSequence()))
{
continue;
}
if (!matched)
{
matched = true;
newSeq = mtch;
}
else
{
System.err.println(
"JAL-2154 regression: warning - found (and ignnored a duplicate CDS sequence):"
+ mtch.toString());
}
}
}
}
// newSeq.setDescription(mapFromId);
return newSeq;
}
/**
* Adds any DBRefEntrys to cdsSeq from contig that have a Mapping congruent to
* the given mapping.
*
* @param cdsSeq
* @param contig
* @param proteinProduct
* @param mapping
* @return list of DBRefEntrys added
*/
protected static List propagateDBRefsToCDS(SequenceI cdsSeq,
SequenceI contig, SequenceI proteinProduct, Mapping mapping)
{
// gather direct refs from contig congruent with mapping
List direct = new ArrayList<>();
HashSet directSources = new HashSet<>();
List refs = contig.getDBRefs();
if (refs != null)
{
for (int ib = 0, nb = refs.size(); ib < nb; ib++)
{
DBRefEntry dbr = refs.get(ib);
MapList map;
if (dbr.hasMap() && (map = dbr.getMap().getMap()).isTripletMap())
{
// check if map is the CDS mapping
if (mapping.getMap().equals(map))
{
direct.add(dbr);
directSources.add(dbr.getSource());
}
}
}
}
List onSource = DBRefUtils.selectRefs(
proteinProduct.getDBRefs(),
directSources.toArray(new String[0]));
List propagated = new ArrayList<>();
// and generate appropriate mappings
for (int ic = 0, nc = direct.size(); ic < nc; ic++)
{
DBRefEntry cdsref = direct.get(ic);
Mapping m = cdsref.getMap();
// clone maplist and mapping
MapList cdsposmap = new MapList(
Arrays.asList(new int[][]
{ new int[] { cdsSeq.getStart(), cdsSeq.getEnd() } }),
m.getMap().getToRanges(), 3, 1);
Mapping cdsmap = new Mapping(m.getTo(), m.getMap());
// create dbref
DBRefEntry newref = new DBRefEntry(cdsref.getSource(),
cdsref.getVersion(), cdsref.getAccessionId(),
new Mapping(cdsmap.getTo(), cdsposmap));
// and see if we can map to the protein product for this mapping.
// onSource is the filtered set of accessions on protein that we are
// tranferring, so we assume accession is the same.
if (cdsmap.getTo() == null && onSource != null)
{
List sourceRefs = DBRefUtils.searchRefs(onSource,
cdsref.getAccessionId());
if (sourceRefs != null)
{
for (DBRefEntry srcref : sourceRefs)
{
if (srcref.getSource().equalsIgnoreCase(cdsref.getSource()))
{
// we have found a complementary dbref on the protein product, so
// update mapping's getTo
newref.getMap().setTo(proteinProduct);
}
}
}
}
cdsSeq.addDBRef(newref);
propagated.add(newref);
}
return propagated;
}
/**
* Transfers co-located features on 'fromSeq' to 'toSeq', adjusting the
* feature start/end ranges, optionally omitting specified feature types.
* Returns the number of features copied.
*
* @param fromSeq
* @param toSeq
* @param mapping
* the mapping from 'fromSeq' to 'toSeq'
* @param select
* if not null, only features of this type are copied (including
* subtypes in the Sequence Ontology)
* @param omitting
*/
protected static int transferFeatures(SequenceI fromSeq, SequenceI toSeq,
MapList mapping, String select, String... omitting)
{
SequenceI copyTo = toSeq;
while (copyTo.getDatasetSequence() != null)
{
copyTo = copyTo.getDatasetSequence();
}
if (fromSeq == copyTo || fromSeq.getDatasetSequence() == copyTo)
{
return 0; // shared dataset sequence
}
/*
* get features, optionally restricted by an ontology term
*/
List sfs = select == null ? fromSeq.getFeatures()
.getPositionalFeatures() : fromSeq.getFeatures()
.getFeaturesByOntology(select);
int count = 0;
for (SequenceFeature sf : sfs)
{
String type = sf.getType();
boolean omit = false;
for (String toOmit : omitting)
{
if (type.equals(toOmit))
{
omit = true;
}
}
if (omit)
{
continue;
}
/*
* locate the mapped range - null if either start or end is
* not mapped (no partial overlaps are calculated)
*/
int start = sf.getBegin();
int end = sf.getEnd();
int[] mappedTo = mapping.locateInTo(start, end);
/*
* if whole exon range doesn't map, try interpreting it
* as 5' or 3' exon overlapping the CDS range
*/
if (mappedTo == null)
{
mappedTo = mapping.locateInTo(end, end);
if (mappedTo != null)
{
/*
* end of exon is in CDS range - 5' overlap
* to a range from the start of the peptide
*/
mappedTo[0] = 1;
}
}
if (mappedTo == null)
{
mappedTo = mapping.locateInTo(start, start);
if (mappedTo != null)
{
/*
* start of exon is in CDS range - 3' overlap
* to a range up to the end of the peptide
*/
mappedTo[1] = toSeq.getLength();
}
}
if (mappedTo != null)
{
int newBegin = Math.min(mappedTo[0], mappedTo[1]);
int newEnd = Math.max(mappedTo[0], mappedTo[1]);
SequenceFeature copy = new SequenceFeature(sf, newBegin, newEnd,
sf.getFeatureGroup(), sf.getScore());
copyTo.addSequenceFeature(copy);
count++;
}
}
return count;
}
/**
* Returns a mapping from dna to protein by inspecting sequence features of
* type "CDS" on the dna. A mapping is constructed if the total CDS feature
* length is 3 times the peptide length (optionally after dropping a trailing
* stop codon). This method does not check whether the CDS nucleotide sequence
* translates to the peptide sequence.
*
* @param dnaSeq
* @param proteinSeq
* @return
*/
public static MapList mapCdsToProtein(SequenceI dnaSeq,
SequenceI proteinSeq)
{
List ranges = findCdsPositions(dnaSeq);
int mappedDnaLength = MappingUtils.getLength(ranges);
/*
* if not a whole number of codons, truncate mapping
*/
int codonRemainder = mappedDnaLength % CODON_LENGTH;
if (codonRemainder > 0)
{
mappedDnaLength -= codonRemainder;
MappingUtils.removeEndPositions(codonRemainder, ranges);
}
int proteinLength = proteinSeq.getLength();
int proteinStart = proteinSeq.getStart();
int proteinEnd = proteinSeq.getEnd();
/*
* incomplete start codon may mean X at start of peptide
* we ignore both for mapping purposes
*/
if (proteinSeq.getCharAt(0) == 'X')
{
// todo JAL-2022 support startPhase > 0
proteinStart++;
proteinLength--;
}
List proteinRange = new ArrayList<>();
/*
* dna length should map to protein (or protein plus stop codon)
*/
int codesForResidues = mappedDnaLength / CODON_LENGTH;
if (codesForResidues == (proteinLength + 1))
{
// assuming extra codon is for STOP and not in peptide
// todo: check trailing codon is indeed a STOP codon
codesForResidues--;
mappedDnaLength -= CODON_LENGTH;
MappingUtils.removeEndPositions(CODON_LENGTH, ranges);
}
if (codesForResidues == proteinLength)
{
proteinRange.add(new int[] { proteinStart, proteinEnd });
return new MapList(ranges, proteinRange, CODON_LENGTH, 1);
}
return null;
}
/**
* Returns a list of CDS ranges found (as sequence positions base 1), i.e. of
* [start, end] positions of sequence features of type "CDS" (or a sub-type of
* CDS in the Sequence Ontology). The ranges are sorted into ascending start
* position order, so this method is only valid for linear CDS in the same
* sense as the protein product.
*
* @param dnaSeq
* @return
*/
protected static List findCdsPositions(SequenceI dnaSeq)
{
List result = new ArrayList<>();
List sfs = dnaSeq.getFeatures().getFeaturesByOntology(
SequenceOntologyI.CDS);
if (sfs.isEmpty())
{
return result;
}
SequenceFeatures.sortFeatures(sfs, true);
for (SequenceFeature sf : sfs)
{
int phase = 0;
try
{
String s = sf.getPhase();
if (s != null)
{
phase = Integer.parseInt(s);
}
} catch (NumberFormatException e)
{
// leave as zero
}
/*
* phase > 0 on first codon means 5' incomplete - skip to the start
* of the next codon; example ENST00000496384
*/
int begin = sf.getBegin();
int end = sf.getEnd();
if (result.isEmpty() && phase > 0)
{
begin += phase;
if (begin > end)
{
// shouldn't happen!
System.err
.println("Error: start phase extends beyond start CDS in "
+ dnaSeq.getName());
}
}
result.add(new int[] { begin, end });
}
/*
* Finally sort ranges by start position. This avoids a dependency on
* keeping features in order on the sequence (if they are in order anyway,
* the sort will have almost no work to do). The implicit assumption is CDS
* ranges are assembled in order. Other cases should not use this method,
* but instead construct an explicit mapping for CDS (e.g. EMBL parsing).
*/
Collections.sort(result, IntRangeComparator.ASCENDING);
return result;
}
/**
* Makes an alignment with a copy of the given sequences, adding in any
* non-redundant sequences which are mapped to by the cross-referenced
* sequences.
*
* @param seqs
* @param xrefs
* @param dataset
* the alignment dataset shared by the new copy
* @return
*/
public static AlignmentI makeCopyAlignment(SequenceI[] seqs,
SequenceI[] xrefs, AlignmentI dataset)
{
AlignmentI copy = new Alignment(new Alignment(seqs));
copy.setDataset(dataset);
boolean isProtein = !copy.isNucleotide();
SequenceIdMatcher matcher = new SequenceIdMatcher(seqs);
if (xrefs != null)
{
// BH 2019.01.25 recoded to remove iterators
for (int ix = 0, nx = xrefs.length; ix < nx; ix++)
{
SequenceI xref = xrefs[ix];
List dbrefs = xref.getDBRefs();
if (dbrefs != null)
{
for (int ir = 0, nir = dbrefs.size(); ir < nir; ir++)
{
DBRefEntry dbref = dbrefs.get(ir);
Mapping map = dbref.getMap();
SequenceI mto;
if (map == null || (mto = map.getTo()) == null
|| mto.isProtein() != isProtein)
{
continue;
}
SequenceI mappedTo = mto;
SequenceI match = matcher.findIdMatch(mappedTo);
if (match == null)
{
matcher.add(mappedTo);
copy.addSequence(mappedTo);
}
}
}
}
}
return copy;
}
/**
* Try to align sequences in 'unaligned' to match the alignment of their
* mapped regions in 'aligned'. For example, could use this to align CDS
* sequences which are mapped to their parent cDNA sequences.
*
* This method handles 1:1 mappings (dna-to-dna or protein-to-protein). For
* dna-to-protein or protein-to-dna use alternative methods.
*
* @param unaligned
* sequences to be aligned
* @param aligned
* holds aligned sequences and their mappings
* @return
*/
public static int alignAs(AlignmentI unaligned, AlignmentI aligned)
{
/*
* easy case - aligning a copy of aligned sequences
*/
if (alignAsSameSequences(unaligned, aligned))
{
return unaligned.getHeight();
}
/*
* fancy case - aligning via mappings between sequences
*/
List unmapped = new ArrayList<>();
Map> columnMap = buildMappedColumnsMap(
unaligned, aligned, unmapped);
int width = columnMap.size();
char gap = unaligned.getGapCharacter();
int realignedCount = 0;
// TODO: verify this loop scales sensibly for very wide/high alignments
for (SequenceI seq : unaligned.getSequences())
{
if (!unmapped.contains(seq))
{
char[] newSeq = new char[width];
Arrays.fill(newSeq, gap); // JBPComment - doubt this is faster than the
// Integer iteration below
int newCol = 0;
int lastCol = 0;
/*
* traverse the map to find columns populated
* by our sequence
*/
for (Integer column : columnMap.keySet())
{
Character c = columnMap.get(column).get(seq);
if (c != null)
{
/*
* sequence has a character at this position
*
*/
newSeq[newCol] = c;
lastCol = newCol;
}
newCol++;
}
/*
* trim trailing gaps
*/
if (lastCol < width)
{
char[] tmp = new char[lastCol + 1];
System.arraycopy(newSeq, 0, tmp, 0, lastCol + 1);
newSeq = tmp;
}
// TODO: optimise SequenceI to avoid char[]->String->char[]
seq.setSequence(String.valueOf(newSeq));
realignedCount++;
}
}
return realignedCount;
}
/**
* If unaligned and aligned sequences share the same dataset sequences, then
* simply copies the aligned sequences to the unaligned sequences and returns
* true; else returns false
*
* @param unaligned
* - sequences to be aligned based on aligned
* @param aligned
* - 'guide' alignment containing sequences derived from same
* dataset as unaligned
* @return
*/
static boolean alignAsSameSequences(AlignmentI unaligned,
AlignmentI aligned)
{
if (aligned.getDataset() == null || unaligned.getDataset() == null)
{
return false; // should only pass alignments with datasets here
}
// map from dataset sequence to alignment sequence(s)
Map> alignedDatasets = new HashMap<>();
for (SequenceI seq : aligned.getSequences())
{
SequenceI ds = seq.getDatasetSequence();
if (alignedDatasets.get(ds) == null)
{
alignedDatasets.put(ds, new ArrayList());
}
alignedDatasets.get(ds).add(seq);
}
/*
* first pass - check whether all sequences to be aligned share a
* dataset sequence with an aligned sequence; also note the leftmost
* ungapped column from which to copy
*/
int leftmost = Integer.MAX_VALUE;
for (SequenceI seq : unaligned.getSequences())
{
final SequenceI ds = seq.getDatasetSequence();
if (!alignedDatasets.containsKey(ds))
{
return false;
}
SequenceI alignedSeq = alignedDatasets.get(ds)
.get(0);
int startCol = alignedSeq.findIndex(seq.getStart()); // 1..
leftmost = Math.min(leftmost, startCol);
}
/*
* second pass - copy aligned sequences;
* heuristic rule: pair off sequences in order for the case where
* more than one shares the same dataset sequence
*/
final char gapCharacter = aligned.getGapCharacter();
for (SequenceI seq : unaligned.getSequences())
{
List alignedSequences = alignedDatasets
.get(seq.getDatasetSequence());
if (alignedSequences.isEmpty())
{
/*
* defensive check - shouldn't happen! (JAL-3536)
*/
continue;
}
SequenceI alignedSeq = alignedSequences.get(0);
/*
* gap fill for leading (5') UTR if any
*/
// TODO this copies intron columns - wrong!
int startCol = alignedSeq.findIndex(seq.getStart()); // 1..
int endCol = alignedSeq.findIndex(seq.getEnd());
char[] seqchars = new char[endCol - leftmost + 1];
Arrays.fill(seqchars, gapCharacter);
char[] toCopy = alignedSeq.getSequence(startCol - 1, endCol);
System.arraycopy(toCopy, 0, seqchars, startCol - leftmost,
toCopy.length);
seq.setSequence(String.valueOf(seqchars));
if (alignedSequences.size() > 0)
{
// pop off aligned sequences (except the last one)
alignedSequences.remove(0);
}
}
/*
* finally remove gapped columns (e.g. introns)
*/
new RemoveGapColCommand("", unaligned.getSequencesArray(), 0,
unaligned.getWidth() - 1, unaligned);
return true;
}
/**
* Returns a map whose key is alignment column number (base 1), and whose
* values are a map of sequence characters in that column.
*
* @param unaligned
* @param aligned
* @param unmapped
* @return
*/
static SortedMap> buildMappedColumnsMap(
AlignmentI unaligned, AlignmentI aligned,
List unmapped)
{
/*
* Map will hold, for each aligned column position, a map of
* {unalignedSequence, characterPerSequence} at that position.
* TreeMap keeps the entries in ascending column order.
*/
SortedMap> map = new TreeMap<>();
/*
* record any sequences that have no mapping so can't be realigned
*/
unmapped.addAll(unaligned.getSequences());
List mappings = aligned.getCodonFrames();
for (SequenceI seq : unaligned.getSequences())
{
for (AlignedCodonFrame mapping : mappings)
{
SequenceI fromSeq = mapping.findAlignedSequence(seq, aligned);
if (fromSeq != null)
{
Mapping seqMap = mapping.getMappingBetween(fromSeq, seq);
if (addMappedPositions(seq, fromSeq, seqMap, map))
{
unmapped.remove(seq);
}
}
}
}
return map;
}
/**
* Helper method that adds to a map the mapped column positions of a sequence.
*
* For example if aaTT-Tg-gAAA is mapped to TTTAAA then the map should record
* that columns 3,4,6,10,11,12 map to characters T,T,T,A,A,A of the mapped to
* sequence.
*
* @param seq
* the sequence whose column positions we are recording
* @param fromSeq
* a sequence that is mapped to the first sequence
* @param seqMap
* the mapping from 'fromSeq' to 'seq'
* @param map
* a map to add the column positions (in fromSeq) of the mapped
* positions of seq
* @return
*/
static boolean addMappedPositions(SequenceI seq, SequenceI fromSeq,
Mapping seqMap, Map> map)
{
if (seqMap == null)
{
return false;
}
/*
* invert mapping if it is from unaligned to aligned sequence
*/
if (seqMap.getTo() == fromSeq.getDatasetSequence())
{
seqMap = new Mapping(seq.getDatasetSequence(),
seqMap.getMap().getInverse());
}
int toStart = seq.getStart();
/*
* traverse [start, end, start, end...] ranges in fromSeq
*/
for (int[] fromRange : seqMap.getMap().getFromRanges())
{
for (int i = 0; i < fromRange.length - 1; i += 2)
{
boolean forward = fromRange[i + 1] >= fromRange[i];
/*
* find the range mapped to (sequence positions base 1)
*/
int[] range = seqMap.locateMappedRange(fromRange[i],
fromRange[i + 1]);
if (range == null)
{
System.err.println("Error in mapping " + seqMap + " from "
+ fromSeq.getName());
return false;
}
int fromCol = fromSeq.findIndex(fromRange[i]);
int mappedCharPos = range[0];
/*
* walk over the 'from' aligned sequence in forward or reverse
* direction; when a non-gap is found, record the column position
* of the next character of the mapped-to sequence; stop when all
* the characters of the range have been counted
*/
while (mappedCharPos <= range[1] && fromCol <= fromSeq.getLength()
&& fromCol >= 0)
{
if (!Comparison.isGap(fromSeq.getCharAt(fromCol - 1)))
{
/*
* mapped from sequence has a character in this column
* record the column position for the mapped to character
*/
Map seqsMap = map.get(fromCol);
if (seqsMap == null)
{
seqsMap = new HashMap<>();
map.put(fromCol, seqsMap);
}
seqsMap.put(seq, seq.getCharAt(mappedCharPos - toStart));
mappedCharPos++;
}
fromCol += (forward ? 1 : -1);
}
}
}
return true;
}
// strictly temporary hack until proper criteria for aligning protein to cds
// are in place; this is so Ensembl -> fetch xrefs Uniprot aligns the Uniprot
public static boolean looksLikeEnsembl(AlignmentI alignment)
{
for (SequenceI seq : alignment.getSequences())
{
String name = seq.getName();
if (!name.startsWith("ENSG") && !name.startsWith("ENST"))
{
return false;
}
}
return true;
}
}