package jalview.analysis; import java.util.Hashtable; import java.util.Vector; import jalview.datamodel.AlignedCodonFrame; import jalview.datamodel.Alignment; import jalview.datamodel.AlignmentAnnotation; import jalview.datamodel.AlignmentI; import jalview.datamodel.Annotation; import jalview.datamodel.ColumnSelection; import jalview.datamodel.FeatureProperties; import jalview.datamodel.Mapping; import jalview.datamodel.Sequence; import jalview.datamodel.SequenceFeature; import jalview.datamodel.SequenceI; import jalview.schemes.ResidueProperties; import jalview.util.MapList; import jalview.util.ShiftList; public class Dna { /** * * @param cdp1 * @param cdp2 * @return -1 if cdp1 aligns before cdp2, 0 if in the same column or cdp2 is * null, +1 if after cdp2 */ private static int compare_codonpos(int[] cdp1, int[] cdp2) { if (cdp2 == null || (cdp1[0] == cdp2[0] && cdp1[1] == cdp2[1] && cdp1[2] == cdp2[2])) return 0; if (cdp1[0] < cdp2[0] || cdp1[1] < cdp2[1] || cdp1[2] < cdp2[2]) return -1; // one base in cdp1 precedes the corresponding base in the // other codon return 1; // one base in cdp1 appears after the corresponding base in the // other codon. } /** * DNA->mapped protein sequence alignment translation given set of sequences * 1. id distinct coding regions within selected region for each sequence 2. * generate peptides based on inframe (or given) translation or (optionally * and where specified) out of frame translations (annotated appropriately) 3. * align peptides based on codon alignment */ /** * id potential products from dna 1. search for distinct products within * selected region for each selected sequence 2. group by associated DB type. * 3. return as form for input into above function */ /** * */ /** * create a new alignment of protein sequences by an inframe translation of * the provided NA sequences * * @param selection * @param seqstring * @param viscontigs * @param gapCharacter * @param annotations * @param aWidth * @return */ public static AlignmentI CdnaTranslate(SequenceI[] selection, String[] seqstring, int viscontigs[], char gapCharacter, AlignmentAnnotation[] annotations, int aWidth) { AlignedCodonFrame codons = new AlignedCodonFrame(aWidth); // stores hash of // subsequent // positions for // each codon // start position // in alignment int s, sSize = selection.length; Vector pepseqs = new Vector(); for (s = 0; s < sSize; s++) { SequenceI newseq = translateCodingRegion(selection[s], seqstring[s], viscontigs, codons, gapCharacter); if (newseq != null) { pepseqs.addElement(newseq); } } if (codons.aaWidth == 0) return null; SequenceI[] newseqs = new SequenceI[pepseqs.size()]; pepseqs.copyInto(newseqs); AlignmentI al = new Alignment(newseqs); al.padGaps(); // ensure we look aligned. al.setDataset(null); translateAlignedAnnotations(annotations, al, codons); al.addCodonFrame(codons); return al; } /** * translate na alignment annotations onto translated amino acid alignment al * using codon mapping codons * * @param annotations * @param al * @param codons */ public static void translateAlignedAnnotations( AlignmentAnnotation[] annotations, AlignmentI al, AlignedCodonFrame codons) { // ////////////////////////////// // Copy annotations across // // Can only do this for columns with consecutive codons, or where // annotation is sequence associated. int pos, a, aSize; if (annotations != null) { for (int i = 0; i < annotations.length; i++) { // Skip any autogenerated annotation if (annotations[i].autoCalculated) { continue; } aSize = codons.getaaWidth(); // aa alignment width. jalview.datamodel.Annotation[] anots = (annotations[i].annotations == null) ? null : new jalview.datamodel.Annotation[aSize]; if (anots != null) { for (a = 0; a < aSize; a++) { // process through codon map. if (codons.codons[a] != null && codons.codons[a][0] == (codons.codons[a][2] - 2)) { pos = codons.codons[a][0]; if (annotations[i].annotations[pos] == null || annotations[i].annotations[pos] == null) continue; // We just take the annotation in the first base in the codon anots[a] = new Annotation(annotations[i].annotations[pos]); } } } jalview.datamodel.AlignmentAnnotation aa = new jalview.datamodel.AlignmentAnnotation( annotations[i].label, annotations[i].description, anots); if (annotations[i].hasScore) { aa.setScore(annotations[i].getScore()); } if (annotations[i].sequenceRef != null) { SequenceI aaSeq = codons .getAaForDnaSeq(annotations[i].sequenceRef); if (aaSeq != null) { // aa.compactAnnotationArray(); // throw away alignment annotation // positioning aa.setSequenceRef(aaSeq); aa.createSequenceMapping(aaSeq, aaSeq.getStart(), true); // rebuild // mapping aa.adjustForAlignment(); aaSeq.addAlignmentAnnotation(aa); } } al.addAnnotation(aa); } } } /** * Translate a na sequence * * @param selection * @param seqstring * @param viscontigs * @param codons * @param gapCharacter * @param newSeq * @return sequence ready to be added to alignment. */ public static SequenceI translateCodingRegion(SequenceI selection, String seqstring, int[] viscontigs, AlignedCodonFrame codons, char gapCharacter) { ShiftList vismapping = new ShiftList(); // map from viscontigs to seqstring // intervals int vc, scontigs[] = new int[viscontigs.length]; int npos = 0; for (vc = 0; vc < viscontigs.length; vc += 2) { vismapping.addShift(npos, viscontigs[vc]); scontigs[vc] = npos; npos += viscontigs[vc + 1]; scontigs[vc + 1] = npos; } StringBuffer protein = new StringBuffer(); String seq = seqstring.replace('U', 'T'); char codon[] = new char[3]; int cdp[] = new int[3], rf = 0, lastnpos = 0, nend; int aspos = 0; int resSize = 0; for (npos = 0, nend = seq.length(); npos < nend; npos++) { if (!jalview.util.Comparison.isGap(seq.charAt(npos))) { cdp[rf] = npos; // store position codon[rf++] = seq.charAt(npos); // store base } // filled an RF yet ? if (rf == 3) { String aa = ResidueProperties.codonTranslate(new String(codon)); rf = 0; if (aa == null) aa = String.valueOf(gapCharacter); else { if (aa.equals("STOP")) { aa = "X"; } resSize++; } // insert/delete gaps prior to this codon - if necessary boolean findpos = true; while (findpos) { // first ensure that the codons array is long enough. codons.checkCodonFrameWidth(aspos); // now check to see if we place the aa at the current aspos in the // protein alignment switch (Dna.compare_codonpos(cdp, codons.codons[aspos])) { case -1: codons.insertAAGap(aspos, gapCharacter); findpos = false; break; case +1: // this aa appears after the aligned codons at aspos, so prefix it // with a gap aa = "" + gapCharacter + aa; aspos++; if (aspos >= codons.aaWidth) codons.aaWidth = aspos + 1; break; // check the next position for alignment case 0: // codon aligns at aspos position. findpos = false; } } // codon aligns with all other sequence residues found at aspos protein.append(aa); lastnpos = npos; if (codons.codons[aspos] == null) { // mark this column as aligning to this aligned reading frame codons.codons[aspos] = new int[] { cdp[0], cdp[1], cdp[2] }; } aspos++; if (aspos >= codons.aaWidth) codons.aaWidth = aspos + 1; } } if (resSize > 0) { SequenceI newseq = new Sequence(selection.getName(), protein .toString()); if (rf != 0) { jalview.bin.Cache.log .debug("trimming contigs for incomplete terminal codon."); // map and trim contigs to ORF region vc = scontigs.length - 1; lastnpos = vismapping.shift(lastnpos); // place npos in context of // whole dna alignment (rather // than visible contigs) // incomplete ORF could be broken over one or two visible contig // intervals. while (vc >= 0 && scontigs[vc] > lastnpos) { if (vc > 0 && scontigs[vc - 1] > lastnpos) { vc -= 2; } else { // correct last interval in list. scontigs[vc] = lastnpos; } } if (vc > 0 && (vc + 1) < scontigs.length) { // truncate map list to just vc elements int t[] = new int[vc + 1]; System.arraycopy(scontigs, 0, t, 0, vc + 1); scontigs = t; } if (vc <= 0) scontigs = null; } if (scontigs != null) { npos = 0; // Find sequence position for scontigs positions on the nucleotide // sequence string we were passed. for (vc = 0; vc < viscontigs.length; vc += 2) { scontigs[vc] = selection.findPosition(scontigs[vc]); // not from 1! npos += viscontigs[vc]; scontigs[vc + 1] = selection .findPosition(npos + scontigs[vc + 1]); // exclusive if (scontigs[vc + 1] == selection.getEnd()) break; } // trim trailing empty intervals. if ((vc + 2) < scontigs.length) { int t[] = new int[vc + 2]; System.arraycopy(scontigs, 0, t, 0, vc + 2); scontigs = t; } MapList map = new MapList(scontigs, new int[] { 1, resSize }, 3, 1); // TODO: store mapping on newSeq for linked // DNA/Protein viewing. transferCodedFeatures(selection, newseq, map, null, null); SequenceI rseq = newseq.deriveSequence(); // construct a dataset // sequence for our new // peptide, regardless. // store a mapping (this actually stores a mapping between the dataset // sequences for the two sequences codons.addMap(selection, newseq, map); return rseq; } } // register the mapping somehow // return null; } /** * Given a peptide newly translated from a dna sequence, copy over and set any * features on the peptide from the DNA. If featureTypes is null, all features * on the dna sequence are searched (rather than just the displayed ones), and * similarly for featureGroups. * * @param dna * @param pep * @param map * @param featureTypes * hash who's keys are the displayed feature type strings * @param featureGroups * hash where keys are feature groups and values are Boolean objects * indicating if they are displayed. */ private static void transferCodedFeatures(SequenceI dna, SequenceI pep, MapList map, Hashtable featureTypes, Hashtable featureGroups) { SequenceFeature[] sf = dna.getDatasetSequence().getSequenceFeatures(); Boolean fgstate; jalview.datamodel.DBRefEntry[] dnarefs = jalview.util.DBRefUtils .selectRefs(dna.getDBRef(), jalview.datamodel.DBRefSource.DNACODINGDBS); if (dnarefs != null) { // intersect with pep for (int d = 0; d < dnarefs.length; d++) { Mapping mp = dnarefs[d].getMap(); if (mp != null) { } } } if (sf != null) { for (int f = 0; f < sf.length; f++) { fgstate = (featureGroups == null) ? null : ((Boolean) featureGroups .get(sf[f].featureGroup)); if ((featureTypes == null || featureTypes.containsKey(sf[f] .getType())) && (fgstate == null || fgstate.booleanValue())) { if (FeatureProperties.isCodingFeature(null, sf[f].getType())) { // if (map.intersectsFrom(sf[f].begin, sf[f].end)) { } } } } } } }