package jalview.datamodel; import jalview.util.Comparison; import jalview.util.ShiftList; import java.util.ArrayList; import java.util.BitSet; import java.util.Collections; import java.util.Iterator; import java.util.List; import java.util.Vector; import java.util.concurrent.locks.ReentrantReadWriteLock; public class HiddenColumns implements Iterable { private static final ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); /* * list of hidden column [start, end] ranges; the list is maintained in * ascending start column order */ private Vector hiddenColumns; /** * This Method is used to return all the HiddenColumn regions * * @return empty list or List of hidden column intervals */ public List getHiddenRegions() { return hiddenColumns == null ? Collections. emptyList() : hiddenColumns; } /** * Find the number of hidden columns * * @return number of hidden columns */ public int getSize() { try { lock.readLock().lock(); int size = 0; if (hasHidden()) { for (int[] range : hiddenColumns) { size += range[1] - range[0] + 1; } } return size; } finally { lock.readLock().unlock(); } } /** * Answers if there are any hidden columns * * @return true if there are hidden columns */ public boolean hasHidden() { try { lock.readLock().lock(); return (hiddenColumns != null) && (!hiddenColumns.isEmpty()); } finally { lock.readLock().unlock(); } } @Override public boolean equals(Object obj) { try { lock.readLock().lock(); if (!(obj instanceof HiddenColumns)) { return false; } HiddenColumns that = (HiddenColumns) obj; /* * check hidden columns are either both null, or match */ if (this.hiddenColumns == null) { return (that.hiddenColumns == null); } if (that.hiddenColumns == null || that.hiddenColumns.size() != this.hiddenColumns.size()) { return false; } int i = 0; for (int[] thisRange : hiddenColumns) { int[] thatRange = that.hiddenColumns.get(i++); if (thisRange[0] != thatRange[0] || thisRange[1] != thatRange[1]) { return false; } } return true; } finally { lock.readLock().unlock(); } } /** * Return absolute column index for a visible column index * * @param column * int column index in alignment view (count from zero) * @return alignment column index for column */ public int adjustForHiddenColumns(int column) { try { lock.readLock().lock(); int result = column; if (hiddenColumns != null) { for (int i = 0; i < hiddenColumns.size(); i++) { int[] region = hiddenColumns.elementAt(i); if (result >= region[0]) { result += region[1] - region[0] + 1; } } } return result; } finally { lock.readLock().unlock(); } } /** * Use this method to find out where a column will appear in the visible * alignment when hidden columns exist. If the column is not visible, then the * left-most visible column will always be returned. * * @param hiddenColumn * the column index in the full alignment including hidden columns * @return the position of the column in the visible alignment */ public int findColumnPosition(int hiddenColumn) { try { lock.readLock().lock(); int result = hiddenColumn; if (hiddenColumns != null) { int index = 0; int[] region; do { region = hiddenColumns.elementAt(index++); if (hiddenColumn > region[1]) { result -= region[1] + 1 - region[0]; } } while ((hiddenColumn > region[1]) && (index < hiddenColumns.size())); if (hiddenColumn >= region[0] && hiddenColumn <= region[1]) { // Here the hidden column is within a region, so // we want to return the position of region[0]-1, adjusted for any // earlier hidden columns. // Calculate the difference between the actual hidden col position // and region[0]-1, and then subtract from result to convert result // from // the adjusted hiddenColumn value to the adjusted region[0]-1 value // However, if the region begins at 0 we cannot return region[0]-1 // just return 0 if (region[0] == 0) { return 0; } else { return result - (hiddenColumn - region[0] + 1); } } } return result; // return the shifted position after removing hidden // columns. } finally { lock.readLock().unlock(); } } /** * Find the visible column which is a given visible number of columns to the * left of another visible column. i.e. for a startColumn x, the column which * is distance 1 away will be column x-1. * * @param visibleDistance * the number of visible columns to offset by * @param startColumn * the column to start from * @return the position of the column in the visible alignment */ public int subtractVisibleColumns(int visibleDistance, int startColumn) { try { lock.readLock().lock(); int distance = visibleDistance; // in case startColumn is in a hidden region, move it to the left int start = adjustForHiddenColumns(findColumnPosition(startColumn)); // get index of hidden region to left of start int index = getHiddenIndexLeft(start); if (index == -1) { // no hidden regions to left of startColumn return start - distance; } // walk backwards through the alignment subtracting the counts of visible // columns from distance int[] region; int gap = 0; int nextstart = start; while ((index > -1) && (distance - gap > 0)) { // subtract the gap to right of region from distance distance -= gap; start = nextstart; // calculate the next gap region = hiddenColumns.get(index); gap = start - region[1]; // set start to just to left of current region nextstart = region[0] - 1; index--; } if (distance - gap > 0) { // fell out of loop because there are no more hidden regions distance -= gap; return nextstart - distance; } return start - distance; } finally { lock.readLock().unlock(); } } /** * Use this method to determine where the next hiddenRegion starts * * @param hiddenRegion * index of hidden region (counts from 0) * @return column number in visible view */ public int findHiddenRegionPosition(int hiddenRegion) { try { lock.readLock().lock(); int result = 0; if (hiddenColumns != null) { int index = 0; int gaps = 0; do { int[] region = hiddenColumns.elementAt(index); if (hiddenRegion == 0) { return region[0]; } gaps += region[1] + 1 - region[0]; result = region[1] + 1; index++; } while (index <= hiddenRegion); result -= gaps; } return result; } finally { lock.readLock().unlock(); } } /** * This method returns the rightmost limit of a region of an alignment with * hidden columns. In otherwords, the next hidden column. * * @param index * int */ public int getHiddenBoundaryRight(int alPos) { try { lock.readLock().lock(); if (hiddenColumns != null) { int index = 0; do { int[] region = hiddenColumns.elementAt(index); if (alPos < region[0]) { return region[0]; } index++; } while (index < hiddenColumns.size()); } return alPos; } finally { lock.readLock().unlock(); } } /** * This method returns the leftmost limit of a region of an alignment with * hidden columns. In otherwords, the previous hidden column. * * @param index * int */ public int getHiddenBoundaryLeft(int alPos) { try { lock.readLock().lock(); if (hiddenColumns != null) { int index = hiddenColumns.size() - 1; do { int[] region = hiddenColumns.elementAt(index); if (alPos > region[1]) { return region[1]; } index--; } while (index > -1); } return alPos; } finally { lock.readLock().unlock(); } } /** * This method returns the index of the hidden region to the left of a column * position. If the column is in a hidden region it returns the index of the * region to the left. If there is no hidden region to the left it returns -1. * * @param pos * int */ private int getHiddenIndexLeft(int pos) { try { lock.readLock().lock(); if (hiddenColumns != null) { int index = hiddenColumns.size() - 1; do { int[] region = hiddenColumns.elementAt(index); if (pos > region[1]) { return index; } index--; } while (index > -1); } return -1; } finally { lock.readLock().unlock(); } } /** * Adds the specified column range to the hidden columns * * @param start * @param end */ public void hideColumns(int start, int end) { hideColumns(start, end, false); } /** * Adds the specified column range to the hidden columns * * @param start * @param end */ private void hideColumns(int start, int end, boolean alreadyLocked) { try { if (!alreadyLocked) { lock.writeLock().lock(); } if (hiddenColumns == null) { hiddenColumns = new Vector<>(); } /* * traverse existing hidden ranges and insert / amend / append as * appropriate */ for (int i = 0; i < hiddenColumns.size(); i++) { int[] region = hiddenColumns.elementAt(i); if (end < region[0] - 1) { /* * insert discontiguous preceding range */ hiddenColumns.insertElementAt(new int[] { start, end }, i); return; } if (end <= region[1]) { /* * new range overlaps existing, or is contiguous preceding it - adjust * start column */ region[0] = Math.min(region[0], start); return; } if (start <= region[1] + 1) { /* * new range overlaps existing, or is contiguous following it - adjust * start and end columns */ region[0] = Math.min(region[0], start); region[1] = Math.max(region[1], end); /* * also update or remove any subsequent ranges * that are overlapped */ while (i < hiddenColumns.size() - 1) { int[] nextRegion = hiddenColumns.get(i + 1); if (nextRegion[0] > end + 1) { /* * gap to next hidden range - no more to update */ break; } region[1] = Math.max(nextRegion[1], end); hiddenColumns.remove(i + 1); } return; } } /* * remaining case is that the new range follows everything else */ hiddenColumns.addElement(new int[] { start, end }); } finally { if (!alreadyLocked) { lock.writeLock().unlock(); } } } public boolean isVisible(int column) { try { lock.readLock().lock(); if (hiddenColumns != null) { for (int[] region : hiddenColumns) { if (column >= region[0] && column <= region[1]) { return false; } } } return true; } finally { lock.readLock().unlock(); } } /** * ColumnSelection */ public HiddenColumns() { } /** * Copy constructor * * @param copy */ public HiddenColumns(HiddenColumns copy) { try { lock.readLock().lock(); if (copy != null) { if (copy.hiddenColumns != null) { hiddenColumns = copy.copyHiddenRegions(); } } } finally { lock.readLock().unlock(); } } private Vector copyHiddenRegions() { Vector copy = new Vector<>(hiddenColumns.size()); for (int i = 0, j = hiddenColumns.size(); i < j; i++) { int[] rh, cp; rh = hiddenColumns.elementAt(i); if (rh != null) { cp = new int[rh.length]; System.arraycopy(rh, 0, cp, 0, rh.length); copy.addElement(cp); } } return copy; } private ArrayList copyHiddenRegionsToArrayList() { ArrayList copy = new ArrayList<>(hiddenColumns.size()); for (int i = 0, j = hiddenColumns.size(); i < j; i++) { int[] rh, cp; rh = hiddenColumns.elementAt(i); if (rh != null) { cp = new int[rh.length]; System.arraycopy(rh, 0, cp, 0, rh.length); copy.add(cp); } } return copy; } public void getHiddenColumnsCopy(Vector copy) { try { lock.readLock().lock(); copy = copyHiddenRegions(); } finally { lock.readLock().unlock(); } } public void getHiddenColumnsCopy(ArrayList copy) { try { lock.readLock().lock(); copy = copyHiddenRegionsToArrayList(); } finally { lock.readLock().unlock(); } } /** * propagate shift in alignment columns to column selection * * @param start * beginning of edit * @param left * shift in edit (+ve for removal, or -ve for inserts) */ public List compensateForEdit(int start, int change, ColumnSelection sel) { try { lock.writeLock().lock(); List deletedHiddenColumns = null; if (hiddenColumns != null) { deletedHiddenColumns = new ArrayList<>(); int hSize = hiddenColumns.size(); for (int i = 0; i < hSize; i++) { int[] region = hiddenColumns.elementAt(i); if (region[0] > start && start + change > region[1]) { deletedHiddenColumns.add(region); hiddenColumns.removeElementAt(i); i--; hSize--; continue; } if (region[0] > start) { region[0] -= change; region[1] -= change; } if (region[0] < 0) { region[0] = 0; } } this.revealHiddenColumns(0, sel); } return deletedHiddenColumns; } finally { lock.writeLock().unlock(); } } /** * propagate shift in alignment columns to column selection special version of * compensateForEdit - allowing for edits within hidden regions * * @param start * beginning of edit * @param left * shift in edit (+ve for removal, or -ve for inserts) */ public void compensateForDelEdits(int start, int change) { try { lock.writeLock().lock(); if (hiddenColumns != null) { for (int i = 0; i < hiddenColumns.size(); i++) { int[] region = hiddenColumns.elementAt(i); if (region[0] >= start) { region[0] -= change; } if (region[1] >= start) { region[1] -= change; } if (region[1] < region[0]) { hiddenColumns.removeElementAt(i--); } if (region[0] < 0) { region[0] = 0; } if (region[1] < 0) { region[1] = 0; } } } } finally { lock.writeLock().unlock(); } } /** * return all visible segments between the given start and end boundaries * * @param start * (first column inclusive from 0) * @param end * (last column - not inclusive) * @return int[] {i_start, i_end, ..} where intervals lie in * start<=i_start<=i_end 0) { List visiblecontigs = new ArrayList<>(); List regions = getHiddenRegions(); int vstart = start; int[] region; int hideStart, hideEnd; for (int j = 0; vstart < end && j < regions.size(); j++) { region = regions.get(j); hideStart = region[0]; hideEnd = region[1]; if (hideEnd < vstart) { continue; } if (hideStart > vstart) { visiblecontigs.add(new int[] { vstart, hideStart - 1 }); } vstart = hideEnd + 1; } if (vstart < end) { visiblecontigs.add(new int[] { vstart, end - 1 }); } int[] vcontigs = new int[visiblecontigs.size() * 2]; for (int i = 0, j = visiblecontigs.size(); i < j; i++) { int[] vc = visiblecontigs.get(i); visiblecontigs.set(i, null); vcontigs[i * 2] = vc[0]; vcontigs[i * 2 + 1] = vc[1]; } visiblecontigs.clear(); return vcontigs; } else { return new int[] { start, end - 1 }; } } finally { lock.readLock().unlock(); } } public String[] getVisibleSequenceStrings(int start, int end, SequenceI[] seqs) { try { lock.readLock().lock(); int i, iSize = seqs.length; String selections[] = new String[iSize]; if (hiddenColumns != null && hiddenColumns.size() > 0) { for (i = 0; i < iSize; i++) { StringBuffer visibleSeq = new StringBuffer(); List regions = getHiddenRegions(); int blockStart = start, blockEnd = end; int[] region; int hideStart, hideEnd; for (int j = 0; j < regions.size(); j++) { region = regions.get(j); hideStart = region[0]; hideEnd = region[1]; if (hideStart < start) { continue; } blockStart = Math.min(blockStart, hideEnd + 1); blockEnd = Math.min(blockEnd, hideStart); if (blockStart > blockEnd) { break; } visibleSeq.append(seqs[i].getSequence(blockStart, blockEnd)); blockStart = hideEnd + 1; blockEnd = end; } if (end > blockStart) { visibleSeq.append(seqs[i].getSequence(blockStart, end)); } selections[i] = visibleSeq.toString(); } } else { for (i = 0; i < iSize; i++) { selections[i] = seqs[i].getSequenceAsString(start, end); } } return selections; } finally { lock.readLock().unlock(); } } /** * Locate the first and last position visible for this sequence. if seq isn't * visible then return the position of the left and right of the hidden * boundary region, and the corresponding alignment column indices for the * extent of the sequence * * @param seq * @return int[] { visible start, visible end, first seqpos, last seqpos, * alignment index for seq start, alignment index for seq end } */ public int[] locateVisibleBoundsOfSequence(SequenceI seq) { try { lock.readLock().lock(); int fpos = seq.getStart(), lpos = seq.getEnd(); int start = 0; if (hiddenColumns == null || hiddenColumns.size() == 0) { int ifpos = seq.findIndex(fpos) - 1, ilpos = seq.findIndex(lpos) - 1; return new int[] { ifpos, ilpos, fpos, lpos, ifpos, ilpos }; } // Simply walk along the sequence whilst watching for hidden column // boundaries List regions = getHiddenRegions(); int spos = fpos, lastvispos = -1, rcount = 0, hideStart = seq.getLength(), hideEnd = -1; int visPrev = 0, visNext = 0, firstP = -1, lastP = -1; boolean foundStart = false; for (int p = 0, pLen = seq.getLength(); spos <= seq.getEnd() && p < pLen; p++) { if (!Comparison.isGap(seq.getCharAt(p))) { // keep track of first/last column // containing sequence data regardless of visibility if (firstP == -1) { firstP = p; } lastP = p; // update hidden region start/end while (hideEnd < p && rcount < regions.size()) { int[] region = regions.get(rcount++); visPrev = visNext; visNext += region[0] - visPrev; hideStart = region[0]; hideEnd = region[1]; } if (hideEnd < p) { hideStart = seq.getLength(); } // update visible boundary for sequence if (p < hideStart) { if (!foundStart) { fpos = spos; start = p; foundStart = true; } lastvispos = p; lpos = spos; } // look for next sequence position spos++; } } if (foundStart) { return new int[] { findColumnPosition(start), findColumnPosition(lastvispos), fpos, lpos, firstP, lastP }; } // otherwise, sequence was completely hidden return new int[] { visPrev, visNext, 0, 0, firstP, lastP }; } finally { lock.readLock().unlock(); } } /** * delete any columns in alignmentAnnotation that are hidden (including * sequence associated annotation). * * @param alignmentAnnotation */ public void makeVisibleAnnotation(AlignmentAnnotation alignmentAnnotation) { makeVisibleAnnotation(-1, -1, alignmentAnnotation); } /** * delete any columns in alignmentAnnotation that are hidden (including * sequence associated annotation). * * @param start * remove any annotation to the right of this column * @param end * remove any annotation to the left of this column * @param alignmentAnnotation * the annotation to operate on */ public void makeVisibleAnnotation(int start, int end, AlignmentAnnotation alignmentAnnotation) { try { lock.readLock().lock(); if (alignmentAnnotation.annotations == null) { return; } if (start == end && end == -1) { start = 0; end = alignmentAnnotation.annotations.length; } if (hiddenColumns != null && hiddenColumns.size() > 0) { // then mangle the alignmentAnnotation annotation array Vector annels = new Vector<>(); Annotation[] els = null; List regions = getHiddenRegions(); int blockStart = start, blockEnd = end; int[] region; int hideStart, hideEnd, w = 0; for (int j = 0; j < regions.size(); j++) { region = regions.get(j); hideStart = region[0]; hideEnd = region[1]; if (hideStart < start) { continue; } blockStart = Math.min(blockStart, hideEnd + 1); blockEnd = Math.min(blockEnd, hideStart); if (blockStart > blockEnd) { break; } annels.addElement(els = new Annotation[blockEnd - blockStart]); System.arraycopy(alignmentAnnotation.annotations, blockStart, els, 0, els.length); w += els.length; blockStart = hideEnd + 1; blockEnd = end; } if (end > blockStart) { annels.addElement(els = new Annotation[end - blockStart + 1]); if ((els.length + blockStart) <= alignmentAnnotation.annotations.length) { // copy just the visible segment of the annotation row System.arraycopy(alignmentAnnotation.annotations, blockStart, els, 0, els.length); } else { // copy to the end of the annotation row System.arraycopy(alignmentAnnotation.annotations, blockStart, els, 0, (alignmentAnnotation.annotations.length - blockStart)); } w += els.length; } if (w == 0) { return; } alignmentAnnotation.annotations = new Annotation[w]; w = 0; for (Annotation[] chnk : annels) { System.arraycopy(chnk, 0, alignmentAnnotation.annotations, w, chnk.length); w += chnk.length; } } else { alignmentAnnotation.restrict(start, end); } } finally { lock.readLock().unlock(); } } /** * * @return true if there are columns hidden */ public boolean hasHiddenColumns() { try { lock.readLock().lock(); return hiddenColumns != null && hiddenColumns.size() > 0; } finally { lock.readLock().unlock(); } } /** * * @return true if there are more than one set of columns hidden */ public boolean hasManyHiddenColumns() { try { lock.readLock().lock(); return hiddenColumns != null && hiddenColumns.size() > 1; } finally { lock.readLock().unlock(); } } /** * mark the columns corresponding to gap characters as hidden in the column * selection * * @param sr */ public void hideInsertionsFor(SequenceI sr) { try { lock.writeLock().lock(); List inserts = sr.getInsertions(); for (int[] r : inserts) { hideColumns(r[0], r[1], true); } } finally { lock.writeLock().unlock(); } } /** * Unhides, and adds to the selection list, all hidden columns */ public void revealAllHiddenColumns(ColumnSelection sel) { try { lock.writeLock().lock(); if (hiddenColumns != null) { for (int i = 0; i < hiddenColumns.size(); i++) { int[] region = hiddenColumns.elementAt(i); for (int j = region[0]; j < region[1] + 1; j++) { sel.addElement(j); } } } hiddenColumns = null; } finally { lock.writeLock().unlock(); } } /** * Reveals, and marks as selected, the hidden column range with the given * start column * * @param start */ public void revealHiddenColumns(int start, ColumnSelection sel) { try { lock.writeLock().lock(); for (int i = 0; i < hiddenColumns.size(); i++) { int[] region = hiddenColumns.elementAt(i); if (start == region[0]) { for (int j = region[0]; j < region[1] + 1; j++) { sel.addElement(j); } hiddenColumns.removeElement(region); break; } } if (hiddenColumns.size() == 0) { hiddenColumns = null; } } finally { lock.writeLock().unlock(); } } /** * removes intersection of position,length ranges in deletions from the * start,end regions marked in intervals. * * @param shifts * @param intervals * @return */ private boolean pruneIntervalVector(final List shifts, Vector intervals) { boolean pruned = false; int i = 0, j = intervals.size() - 1, s = 0, t = shifts.size() - 1; int hr[] = intervals.elementAt(i); int sr[] = shifts.get(s); while (i <= j && s <= t) { boolean trailinghn = hr[1] >= sr[0]; if (!trailinghn) { if (i < j) { hr = intervals.elementAt(++i); } else { i++; } continue; } int endshift = sr[0] + sr[1]; // deletion ranges - -ve means an insert if (endshift < hr[0] || endshift < sr[0]) { // leadinghc disjoint or not a deletion if (s < t) { sr = shifts.get(++s); } else { s++; } continue; } boolean leadinghn = hr[0] >= sr[0]; boolean leadinghc = hr[0] < endshift; boolean trailinghc = hr[1] < endshift; if (leadinghn) { if (trailinghc) { // deleted hidden region. intervals.removeElementAt(i); pruned = true; j--; if (i <= j) { hr = intervals.elementAt(i); } continue; } if (leadinghc) { hr[0] = endshift; // clip c terminal region leadinghn = !leadinghn; pruned = true; } } if (!leadinghn) { if (trailinghc) { if (trailinghn) { hr[1] = sr[0] - 1; pruned = true; } } else { // sr contained in hr if (s < t) { sr = shifts.get(++s); } else { s++; } continue; } } } return pruned; // true if any interval was removed or modified by // operations. } /** * remove any hiddenColumns or selected columns and shift remaining based on a * series of position, range deletions. * * @param deletions */ public void pruneDeletions(List shifts) { try { lock.writeLock().lock(); // delete any intervals intersecting. if (hiddenColumns != null) { pruneIntervalVector(shifts, hiddenColumns); if (hiddenColumns != null && hiddenColumns.size() == 0) { hiddenColumns = null; } } } finally { lock.writeLock().unlock(); } } /** * Add gaps into the sequences aligned to profileseq under the given * AlignmentView * * @param profileseq * @param al * - alignment to have gaps inserted into it * @param input * - alignment view where sequence corresponding to profileseq is * first entry * @return new HiddenColumns for new alignment view, with insertions into * profileseq marked as hidden. */ public static HiddenColumns propagateInsertions(SequenceI profileseq, AlignmentI al, AlignmentView input) { int profsqpos = 0; char gc = al.getGapCharacter(); Object[] alandhidden = input.getAlignmentAndHiddenColumns(gc); HiddenColumns nview = (HiddenColumns) alandhidden[1]; SequenceI origseq = ((SequenceI[]) alandhidden[0])[profsqpos]; nview.propagateInsertions(profileseq, al, origseq); return nview; } /** * * @param profileseq * - sequence in al which corresponds to origseq * @param al * - alignment which is to have gaps inserted into it * @param origseq * - sequence corresponding to profileseq which defines gap map for * modifying al */ private void propagateInsertions(SequenceI profileseq, AlignmentI al, SequenceI origseq) { char gc = al.getGapCharacter(); // recover mapping between sequence's non-gap positions and positions // mapping to view. pruneDeletions(ShiftList.parseMap(origseq.gapMap())); int[] viscontigs = al.getHiddenColumns().getVisibleContigs(0, profileseq.getLength()); int spos = 0; int offset = 0; // add profile to visible contigs for (int v = 0; v < viscontigs.length; v += 2) { if (viscontigs[v] > spos) { StringBuffer sb = new StringBuffer(); for (int s = 0, ns = viscontigs[v] - spos; s < ns; s++) { sb.append(gc); } for (int s = 0, ns = al.getHeight(); s < ns; s++) { SequenceI sqobj = al.getSequenceAt(s); if (sqobj != profileseq) { String sq = al.getSequenceAt(s).getSequenceAsString(); if (sq.length() <= spos + offset) { // pad sequence int diff = spos + offset - sq.length() - 1; if (diff > 0) { // pad gaps sq = sq + sb; while ((diff = spos + offset - sq.length() - 1) > 0) { // sq = sq // + ((diff >= sb.length()) ? sb.toString() : sb // .substring(0, diff)); if (diff >= sb.length()) { sq += sb.toString(); } else { char[] buf = new char[diff]; sb.getChars(0, diff, buf, 0); sq += buf.toString(); } } } sq += sb.toString(); } else { al.getSequenceAt(s).setSequence( sq.substring(0, spos + offset) + sb.toString() + sq.substring(spos + offset)); } } } // offset+=sb.length(); } spos = viscontigs[v + 1] + 1; } if ((offset + spos) < profileseq.getLength()) { // pad the final region with gaps. StringBuffer sb = new StringBuffer(); for (int s = 0, ns = profileseq.getLength() - spos - offset; s < ns; s++) { sb.append(gc); } for (int s = 0, ns = al.getHeight(); s < ns; s++) { SequenceI sqobj = al.getSequenceAt(s); if (sqobj == profileseq) { continue; } String sq = sqobj.getSequenceAsString(); // pad sequence int diff = origseq.getLength() - sq.length(); while (diff > 0) { // sq = sq // + ((diff >= sb.length()) ? sb.toString() : sb // .substring(0, diff)); if (diff >= sb.length()) { sq += sb.toString(); } else { char[] buf = new char[diff]; sb.getChars(0, diff, buf, 0); sq += buf.toString(); } diff = origseq.getLength() - sq.length(); } } } } /** * remove any hiddenColumns or selected columns and shift remaining based on a * series of position, range deletions. * * @param deletions */ private void pruneDeletions(ShiftList deletions) { if (deletions != null) { final List shifts = deletions.getShifts(); if (shifts != null && shifts.size() > 0) { pruneDeletions(shifts); // and shift the rest. this.compensateForEdits(deletions); } } } /** * Adjust hidden column boundaries based on a series of column additions or * deletions in visible regions. * * @param shiftrecord * @return */ private ShiftList compensateForEdits(ShiftList shiftrecord) { if (shiftrecord != null) { final List shifts = shiftrecord.getShifts(); if (shifts != null && shifts.size() > 0) { int shifted = 0; for (int i = 0, j = shifts.size(); i < j; i++) { int[] sh = shifts.get(i); compensateForDelEdits(shifted + sh[0], sh[1]); shifted -= sh[1]; } } return shiftrecord.getInverse(); } return null; } /** * Returns a hashCode built from hidden column ranges */ @Override public int hashCode() { try { lock.readLock().lock(); int hashCode = 1; if (hiddenColumns != null) { for (int[] hidden : hiddenColumns) { hashCode = 31 * hashCode + hidden[0]; hashCode = 31 * hashCode + hidden[1]; } } return hashCode; } finally { lock.readLock().unlock(); } } /** * Hide columns corresponding to the marked bits * * @param inserts * - columns map to bits starting from zero */ public void hideMarkedBits(BitSet inserts) { try { lock.writeLock().lock(); for (int firstSet = inserts .nextSetBit(0), lastSet = 0; firstSet >= 0; firstSet = inserts .nextSetBit(lastSet)) { lastSet = inserts.nextClearBit(firstSet); hideColumns(firstSet, lastSet - 1, true); } } finally { lock.writeLock().unlock(); } } /** * * @param inserts * BitSet where hidden columns will be marked */ public void markHiddenRegions(BitSet inserts) { try { lock.readLock().lock(); if (hiddenColumns == null) { return; } for (int[] range : hiddenColumns) { inserts.set(range[0], range[1] + 1); } } finally { lock.readLock().unlock(); } } @Override public Iterator iterator() { if (hiddenColumns == null) { return Collections. emptyList().iterator(); } return hiddenColumns.iterator(); } }