/*
* Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
* Copyright (C) $$Year-Rel$$ The Jalview Authors
*
* This file is part of Jalview.
*
* Jalview is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Jalview is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Jalview. If not, see .
* The Jalview Authors are detailed in the 'AUTHORS' file.
*/
package jalview.math;
import jalview.datamodel.Point;
import java.io.PrintStream;
import java.util.HashMap;
import java.util.Map;
/**
* Model for a 3x3 matrix which provides methods for rotation in 3-D space
*/
public class RotatableMatrix
{
private static final int DIMS = 3;
/*
* cache the most used rotations: +/- 1, 2, 3, 4 degrees around x or y axis
*/
private static Map> cachedRotations;
static
{
cachedRotations = new HashMap<>();
for (Axis axis : Axis.values())
{
HashMap map = new HashMap<>();
cachedRotations.put(axis, map);
for (int deg = 1; deg < 5; deg++)
{
float[][] rotation = getRotation(deg, axis);
map.put(Float.valueOf(deg), rotation);
rotation = getRotation(-deg, axis);
map.put(Float.valueOf(-deg), rotation);
}
}
}
public enum Axis
{
X, Y, Z
}
float[][] matrix;
/**
* Constructor creates a new identity matrix (all values zero except for 1 on
* the diagonal)
*/
public RotatableMatrix()
{
matrix = new float[DIMS][DIMS];
for (int j = 0; j < DIMS; j++)
{
matrix[j][j] = 1f;
}
}
/**
* Sets the value at position (i, j) of the matrix
*
* @param i
* @param j
* @param value
*/
public void setValue(int i, int j, float value)
{
matrix[i][j] = value;
}
/**
* Answers the value at position (i, j) of the matrix
*
* @param i
* @param j
* @return
*/
public float getValue(int i, int j)
{
return matrix[i][j];
}
/**
* Prints the matrix in rows of space-delimited values
*/
public void print(PrintStream ps)
{
ps.println(matrix[0][0] + " " + matrix[0][1] + " " + matrix[0][2]);
ps.println(matrix[1][0] + " " + matrix[1][1] + " " + matrix[1][2]);
ps.println(matrix[2][0] + " " + matrix[2][1] + " " + matrix[2][2]);
}
/**
* Rotates the matrix through the specified number of degrees around the
* specified axis
*
* @param degrees
* @param axis
*/
public void rotate(float degrees, Axis axis)
{
float[][] rot = getRotation(degrees, axis);
preMultiply(rot);
}
/**
* Answers a matrix which, when it pre-multiplies another matrix, applies a
* rotation of the specified number of degrees around the specified axis
*
* @param degrees
* @param axis
* @return
* @see https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
*/
protected static float[][] getRotation(float degrees, Axis axis)
{
Float floatValue = Float.valueOf(degrees);
if (cachedRotations.get(axis).containsKey(floatValue))
{
// System.out.println("getRotation from cache: " + (int) degrees);
return cachedRotations.get(axis).get(floatValue);
}
float costheta = (float) Math.cos(degrees * Math.PI / 180f);
float sintheta = (float) Math.sin(degrees * Math.PI / 180f);
float[][] rot = new float[DIMS][DIMS];
switch (axis)
{
case X:
rot[0][0] = 1f;
rot[1][1] = costheta;
rot[1][2] = sintheta;
rot[2][1] = -sintheta;
rot[2][2] = costheta;
break;
case Y:
rot[0][0] = costheta;
rot[0][2] = -sintheta;
rot[1][1] = 1f;
rot[2][0] = sintheta;
rot[2][2] = costheta;
break;
case Z:
rot[0][0] = costheta;
rot[0][1] = -sintheta;
rot[1][0] = sintheta;
rot[1][1] = costheta;
rot[2][2] = 1f;
break;
}
return rot;
}
/**
* Answers a new array of float values which is the result of pre-multiplying
* this matrix by the given vector. Each value of the result is the dot
* product of the vector with one column of this matrix. The matrix and input
* vector are not modified.
*
* @param vect
*
* @return
*/
public float[] vectorMultiply(float[] vect)
{
float[] result = new float[DIMS];
for (int i = 0; i < DIMS; i++)
{
result[i] = (matrix[i][0] * vect[0]) + (matrix[i][1] * vect[1])
+ (matrix[i][2] * vect[2]);
}
return result;
}
/**
* Performs pre-multiplication of this matrix by the given one. Value (i, j)
* of the result is the dot product of the i'th row of mat
with
* the j'th column of this matrix.
*
* @param mat
*/
public void preMultiply(float[][] mat)
{
float[][] tmp = new float[DIMS][DIMS];
for (int i = 0; i < DIMS; i++)
{
for (int j = 0; j < DIMS; j++)
{
tmp[i][j] = (mat[i][0] * matrix[0][j]) + (mat[i][1] * matrix[1][j])
+ (mat[i][2] * matrix[2][j]);
}
}
matrix = tmp;
}
/**
* Performs post-multiplication of this matrix by the given one. Value (i, j)
* of the result is the dot product of the i'th row of this matrix with the
* j'th column of mat
.
*
* @param mat
*/
public void postMultiply(float[][] mat)
{
float[][] tmp = new float[DIMS][DIMS];
for (int i = 0; i < DIMS; i++)
{
for (int j = 0; j < DIMS; j++)
{
tmp[i][j] = (matrix[i][0] * mat[0][j]) + (matrix[i][1] * mat[1][j])
+ (matrix[i][2] * mat[2][j]);
}
}
matrix = tmp;
}
/**
* Performs a vector multiplication whose result is the Point representing the
* input point's value vector post-multiplied by this matrix.
*
* @param coord
* @return
*/
public Point vectorMultiply(Point coord)
{
float[] v = vectorMultiply(new float[] { coord.x, coord.y, coord.z });
return new Point(v[0], v[1], v[2]);
}
}