/*
* Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
* Copyright (C) $$Year-Rel$$ The Jalview Authors
*
* This file is part of Jalview.
*
* Jalview is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Jalview is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Jalview. If not, see .
* The Jalview Authors are detailed in the 'AUTHORS' file.
*/
package jalview.viewmodel;
import jalview.analysis.PCA;
import jalview.api.RotatableCanvasI;
import jalview.api.analysis.ScoreModelI;
import jalview.api.analysis.SimilarityParamsI;
import jalview.datamodel.AlignmentView;
import jalview.datamodel.Point;
import jalview.datamodel.SequenceI;
import jalview.datamodel.SequencePoint;
import java.util.List;
import java.util.Vector;
public class PCAModel
{
/*
* inputs
*/
private AlignmentView inputData;
private final SequenceI[] seqs;
private final SimilarityParamsI similarityParams;
/*
* options - score model, nucleotide / protein
*/
private ScoreModelI scoreModel;
private boolean nucleotide = false;
/*
* outputs
*/
private PCA pca;
int top;
private List points;
/**
* Constructor given sequence data, score model and score calculation
* parameter options.
*
* @param seqData
* @param sqs
* @param nuc
* @param modelName
* @param params
*/
public PCAModel(AlignmentView seqData, SequenceI[] sqs, boolean nuc,
ScoreModelI modelName, SimilarityParamsI params)
{
inputData = seqData;
seqs = sqs;
nucleotide = nuc;
scoreModel = modelName;
similarityParams = params;
}
/**
* Performs the PCA calculation (in the same thread) and extracts result data
* needed for visualisation by PCAPanel
*/
public void calculate()
{
pca = new PCA(inputData, scoreModel, similarityParams);
pca.run(); // executes in same thread, wait for completion
// Now find the component coordinates
int ii = 0;
while ((ii < seqs.length) && (seqs[ii] != null))
{
ii++;
}
int height = pca.getHeight();
// top = pca.getM().height() - 1;
top = height - 1;
points = new Vector<>();
Point[] scores = pca.getComponents(top - 1, top - 2, top - 3, 100);
for (int i = 0; i < height; i++)
{
SequencePoint sp = new SequencePoint(seqs[i], scores[i]);
points.add(sp);
}
}
public void updateRc(RotatableCanvasI rc)
{
rc.setPoints(points, pca.getHeight());
}
public boolean isNucleotide()
{
return nucleotide;
}
public void setNucleotide(boolean nucleotide)
{
this.nucleotide = nucleotide;
}
/**
* Answers the index of the principal dimension of the PCA
*
* @return
*/
public int getTop()
{
return top;
}
public void setTop(int t)
{
top = t;
}
/**
* Updates the 3D coordinates for the list of points to the given dimensions.
* Principal dimension is getTop(). Next greatest eigenvector is getTop()-1.
* Note - pca.getComponents starts counting the spectrum from rank-2 to zero,
* rather than rank-1, so getComponents(dimN ...) == updateRcView(dimN+1 ..)
*
* @param dim1
* @param dim2
* @param dim3
*/
public void updateRcView(int dim1, int dim2, int dim3)
{
// note: actual indices for components are dim1-1, etc (patch for JAL-1123)
Point[] scores = pca.getComponents(dim1 - 1, dim2 - 1, dim3 - 1, 100);
for (int i = 0; i < pca.getHeight(); i++)
{
points.get(i).coord = scores[i];
}
}
public String getDetails()
{
return pca.getDetails();
}
public AlignmentView getInputData()
{
return inputData;
}
public void setInputData(AlignmentView data)
{
inputData = data;
}
public String getPointsasCsv(boolean transformed, int xdim, int ydim,
int zdim)
{
StringBuffer csv = new StringBuffer();
csv.append("\"Sequence\"");
if (transformed)
{
csv.append(",");
csv.append(xdim);
csv.append(",");
csv.append(ydim);
csv.append(",");
csv.append(zdim);
}
else
{
for (int d = 1, dmax = pca.component(1).length; d <= dmax; d++)
{
csv.append("," + d);
}
}
csv.append("\n");
for (int s = 0; s < seqs.length; s++)
{
csv.append("\"" + seqs[s].getName() + "\"");
double fl[];
if (!transformed)
{
// output pca in correct order
fl = pca.component(s);
for (int d = fl.length - 1; d >= 0; d--)
{
csv.append(",");
csv.append(fl[d]);
}
}
else
{
Point p = points.get(s).coord;
csv.append(",").append(p.x);
csv.append(",").append(p.y);
csv.append(",").append(p.z);
}
csv.append("\n");
}
return csv.toString();
}
public String getScoreModelName()
{
return scoreModel == null ? "" : scoreModel.getName();
}
public void setScoreModel(ScoreModelI sm)
{
this.scoreModel = sm;
}
/**
* Answers the parameters configured for pairwise similarity calculations
*
* @return
*/
public SimilarityParamsI getSimilarityParameters()
{
return similarityParams;
}
public List getSequencePoints()
{
return points;
}
public void setSequencePoints(List sp)
{
points = sp;
}
/**
* Answers the object holding the values of the computed PCA
*
* @return
*/
public PCA getPcaData()
{
return pca;
}
public void setPCA(PCA data)
{
pca = data;
}
}