/* * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$) * Copyright (C) $$Year-Rel$$ The Jalview Authors * * This file is part of Jalview. * * Jalview is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, either version 3 * of the License, or (at your option) any later version. * * Jalview is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Jalview. If not, see . * The Jalview Authors are detailed in the 'AUTHORS' file. */ package jalview.viewmodel; import jalview.analysis.PCA; import jalview.api.RotatableCanvasI; import jalview.api.analysis.ScoreModelI; import jalview.api.analysis.SimilarityParamsI; import jalview.datamodel.AlignmentView; import jalview.datamodel.Point; import jalview.datamodel.SequenceI; import jalview.datamodel.SequencePoint; import java.util.List; import java.util.Vector; public class PCAModel { /* * inputs */ private final AlignmentView seqstrings; private final SequenceI[] seqs; private final SimilarityParamsI similarityParams; /* * options - score model, nucleotide / protein */ private ScoreModelI scoreModel; private boolean nucleotide = false; /* * outputs */ private PCA pca; int top; private List points; /** * Constructor given sequence data, score model and score calculation * parameter options. * * @param seqData * @param sqs * @param nuc * @param modelName * @param params */ public PCAModel(AlignmentView seqData, SequenceI[] sqs, boolean nuc, ScoreModelI modelName, SimilarityParamsI params) { seqstrings = seqData; seqs = sqs; nucleotide = nuc; scoreModel = modelName; similarityParams = params; } /** * Performs the PCA calculation (in the same thread) and extracts result data * needed for visualisation by PCAPanel */ public void calculate() { pca = new PCA(seqstrings, scoreModel, similarityParams); pca.run(); // executes in same thread, wait for completion // Now find the component coordinates int ii = 0; while ((ii < seqs.length) && (seqs[ii] != null)) { ii++; } int height = pca.getHeight(); // top = pca.getM().height() - 1; top = height - 1; points = new Vector<>(); Point[] scores = pca.getComponents(top - 1, top - 2, top - 3, 100); for (int i = 0; i < height; i++) { SequencePoint sp = new SequencePoint(seqs[i], scores[i]); points.add(sp); } } public void updateRc(RotatableCanvasI rc) { rc.setPoints(points, pca.getHeight()); } public boolean isNucleotide() { return nucleotide; } public void setNucleotide(boolean nucleotide) { this.nucleotide = nucleotide; } /** * Answers the index of the principal dimension of the PCA * * @return */ public int getTop() { return top; } public void setTop(int t) { top = t; } /** * Updates the 3D coordinates for the list of points to the given dimensions. * Principal dimension is getTop(). Next greatest eigenvector is getTop()-1. * Note - pca.getComponents starts counting the spectrum from rank-2 to zero, * rather than rank-1, so getComponents(dimN ...) == updateRcView(dimN+1 ..) * * @param dim1 * @param dim2 * @param dim3 */ public void updateRcView(int dim1, int dim2, int dim3) { // note: actual indices for components are dim1-1, etc (patch for JAL-1123) Point[] scores = pca.getComponents(dim1 - 1, dim2 - 1, dim3 - 1, 100); for (int i = 0; i < pca.getHeight(); i++) { points.get(i).coord = scores[i]; } } public String getDetails() { return pca.getDetails(); } public AlignmentView getSeqtrings() { return seqstrings; } public String getPointsasCsv(boolean transformed, int xdim, int ydim, int zdim) { StringBuffer csv = new StringBuffer(); csv.append("\"Sequence\""); if (transformed) { csv.append(","); csv.append(xdim); csv.append(","); csv.append(ydim); csv.append(","); csv.append(zdim); } else { for (int d = 1, dmax = pca.component(1).length; d <= dmax; d++) { csv.append("," + d); } } csv.append("\n"); for (int s = 0; s < seqs.length; s++) { csv.append("\"" + seqs[s].getName() + "\""); double fl[]; if (!transformed) { // output pca in correct order fl = pca.component(s); for (int d = fl.length - 1; d >= 0; d--) { csv.append(","); csv.append(fl[d]); } } else { Point p = points.get(s).coord; csv.append(",").append(p.x); csv.append(",").append(p.y); csv.append(",").append(p.z); } csv.append("\n"); } return csv.toString(); } public String getScoreModelName() { return scoreModel == null ? "" : scoreModel.getName(); } public void setScoreModel(ScoreModelI sm) { this.scoreModel = sm; } /** * Answers the parameters configured for pairwise similarity calculations * * @return */ public SimilarityParamsI getSimilarityParameters() { return similarityParams; } public List getSequencePoints() { return points; } public void setSequencePoints(List sp) { points = sp; } /** * Answers the object holding the values of the computed PCA * * @return */ public PCA getPcaData() { return pca; } public void setPCA(PCA data) { pca = data; } }