package jalview.analysis;
import jalview.datamodel.Alignment;
import jalview.datamodel.AlignmentI;
import jalview.datamodel.Sequence;
import jalview.datamodel.SequenceI;
import jalview.io.FastaFile;
import java.util.Arrays;
import java.util.Random;
/**
* Generates, and outputs in Fasta format, a random DNA alignment for given
* sequence length and count. Will regenerate the same alignment each time if
* the same random seed is used (so may be used for reproducible unit tests).
* Not guaranteed to reproduce the same results between versions, as the rules
* may get tweaked to produce more 'realistic' results.
*
* Arguments:
*
* - length (number of bases in each sequence)
* - height (number of sequences)
* - a whole number random seed
* - percentage of gaps to include (0-100)
* - percentage chance of variation of each position (0-100)
*
*
* @author gmcarstairs
*
*/
public class DnaAlignmentGenerator
{
private static final char GAP = '-';
private static final char ZERO = '0';
private static final char[] BASES = new char[] { 'G', 'T', 'C', 'A' };
private Random random;
/**
* Outputs a DNA 'alignment' where each position is a random choice from
* 'GTCA-'.
*
* @param args
*/
public static void main(String[] args)
{
if (args.length != 5)
{
usage();
return;
}
int width = Integer.parseInt(args[0]);
int height = Integer.parseInt(args[1]);
long randomSeed = Long.valueOf(args[2]);
int gapPercentage = Integer.valueOf(args[3]);
int changePercentage = Integer.valueOf(args[4]);
AlignmentI al = new DnaAlignmentGenerator().generate(width, height,
randomSeed, gapPercentage, changePercentage);
System.out.println("; " + height + " sequences of " + width
+ " bases with " + gapPercentage + "% gaps and "
+ changePercentage + "% mutations (random seed = " + randomSeed
+ ")");
System.out.println(new FastaFile().print(al.getSequencesArray()));
}
/**
* Print parameter help.
*/
private static void usage()
{
System.out.println("Usage:");
System.out.println("arg0: number of (non-gap) bases per sequence");
System.out.println("arg1: number sequences");
System.out
.println("arg2: an integer as random seed (same seed = same results)");
System.out.println("arg3: percentage of gaps to (randomly) generate");
System.out
.println("arg4: percentage of 'mutations' to (randomly) generate");
System.out.println("Example: DnaAlignmentGenerator 12 15 387 10 5");
System.out
.println("- 15 sequences of 12 bases each, approx 10% gaps and 5% mutations, random seed = 387");
}
/**
* Default constructor
*/
public DnaAlignmentGenerator()
{
}
/**
* Outputs a DNA 'alignment' of given width and height, where each position is
* a random choice from 'GTCA-'.
*
* @param width
* @param height
* @param randomSeed
* @param changePercentage
* @param gapPercentage
*/
public AlignmentI generate(int width, int height, long randomSeed,
int gapPercentage, int changePercentage)
{
SequenceI[] seqs = new SequenceI[height];
random = new Random(randomSeed);
seqs[0] = generateSequence(1, width, gapPercentage);
for (int seqno = 1; seqno < height; seqno++)
{
seqs[seqno] = generateAnotherSequence(seqs[0].getSequence(),
seqno + 1, width, changePercentage);
}
AlignmentI al = new Alignment(seqs);
return al;
}
/**
* Outputs a DNA 'sequence' of given length, with some random gaps included.
*
* @param seqno
* @param length
* @param gapPercentage
*/
private SequenceI generateSequence(int seqno, int length,
int gapPercentage)
{
StringBuilder seq = new StringBuilder(length);
/*
* Loop till we've added 'length' bases (excluding gaps)
*/
for (int count = 0; count < length;)
{
boolean addGap = random.nextInt(100) < gapPercentage;
char c = addGap ? GAP : BASES[random.nextInt(Integer.MAX_VALUE) % 4];
seq.append(c);
if (!addGap)
{
count++;
}
}
final String seqName = "SEQ" + seqno;
final String seqString = seq.toString();
SequenceI sq = new Sequence(seqName, seqString);
sq.createDatasetSequence();
return sq;
}
/**
* Generate a sequence approximately aligned to the first one.
*
* @param ds
* @param seqno
* @param width
* number of bases
* @param changePercentage
* @return
*/
private SequenceI generateAnotherSequence(char[] ds, int seqno,
int width, int changePercentage)
{
int length = ds.length;
char[] seq = new char[length];
Arrays.fill(seq, ZERO);
int gapsWanted = length - width;
int gapsAdded = 0;
/*
* First 'randomly' mimic gaps in model sequence.
*/
for (int pos = 0; pos < length; pos++)
{
if (ds[pos] == GAP)
{
/*
* Add a gap at the same position with changePercentage likelihood
*/
seq[pos] = randomCharacter(GAP, changePercentage);
if (seq[pos] == GAP)
{
gapsAdded++;
}
}
}
/*
* Next scatter any remaining gaps (if any) at random. This gives an even
* distribution.
*/
while (gapsAdded < gapsWanted)
{
boolean added = false;
while (!added)
{
int pos = random.nextInt(length);
if (seq[pos] != GAP)
{
seq[pos] = GAP;
added = true;
gapsAdded++;
}
}
}
/*
* Finally fill in the rest with randomly mutated bases.
*/
for (int pos = 0; pos < length; pos++)
{
if (seq[pos] == ZERO)
{
char c = randomCharacter(ds[pos], changePercentage);
seq[pos] = c;
}
}
final String seqName = "SEQ" + seqno;
final String seqString = new String(seq);
SequenceI sq = new Sequence(seqName, seqString);
sq.createDatasetSequence();
return sq;
}
/**
* Returns a random character that is changePercentage% likely to match the
* given type (as base or gap).
*
* @param changePercentage
*
* @param c
* @return
*/
private char randomCharacter(char c, int changePercentage)
{
final boolean mutation = random.nextInt(100) < changePercentage;
if (!mutation)
{
return c;
}
char newchar = c;
while (newchar == c)
{
newchar = BASES[random.nextInt(Integer.MAX_VALUE) % 4];
}
return newchar;
}
}