X-Git-Url: http://source.jalview.org/gitweb/?a=blobdiff_plain;f=forester%2Fjava%2Fsrc%2Forg%2Fforester%2Fphylogeny%2FPhylogenyMethods.java;h=97eba29cd3af458cc6b0e9f00100cd02329bbba1;hb=f507bf348ffed906d04bc76a614d6778d4cb5d64;hp=2d238a2fa9df628e5afa2ecdc2b726a035d1635e;hpb=619edf1dd8026422bf60d9d746947559cad4be28;p=jalview.git diff --git a/forester/java/src/org/forester/phylogeny/PhylogenyMethods.java b/forester/java/src/org/forester/phylogeny/PhylogenyMethods.java index 2d238a2..97eba29 100644 --- a/forester/java/src/org/forester/phylogeny/PhylogenyMethods.java +++ b/forester/java/src/org/forester/phylogeny/PhylogenyMethods.java @@ -21,209 +21,222 @@ // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA // // Contact: phylosoft @ gmail . com -// WWW: www.phylosoft.org/forester +// WWW: https://sites.google.com/site/cmzmasek/home/software/forester package org.forester.phylogeny; import java.awt.Color; +import java.io.File; +import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; +import java.util.Collections; +import java.util.Comparator; +import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.List; +import java.util.Map; import java.util.Set; -import java.util.SortedMap; -import java.util.TreeMap; - +import java.util.regex.Matcher; +import java.util.regex.Pattern; +import java.util.regex.PatternSyntaxException; + +import org.forester.archaeopteryx.TreePanelUtil; +import org.forester.io.parsers.FastaParser; +import org.forester.io.parsers.PhylogenyParser; +import org.forester.io.parsers.phyloxml.PhyloXmlDataFormatException; +import org.forester.io.parsers.phyloxml.PhyloXmlUtil; +import org.forester.io.parsers.util.PhylogenyParserException; +import org.forester.msa.Msa; +import org.forester.phylogeny.data.Accession; +import org.forester.phylogeny.data.Annotation; import org.forester.phylogeny.data.BranchColor; import org.forester.phylogeny.data.BranchWidth; import org.forester.phylogeny.data.Confidence; import org.forester.phylogeny.data.DomainArchitecture; +import org.forester.phylogeny.data.Event; +import org.forester.phylogeny.data.Identifier; +import org.forester.phylogeny.data.PhylogenyDataUtil; +import org.forester.phylogeny.data.Sequence; import org.forester.phylogeny.data.Taxonomy; +import org.forester.phylogeny.factories.ParserBasedPhylogenyFactory; +import org.forester.phylogeny.factories.PhylogenyFactory; import org.forester.phylogeny.iterators.PhylogenyNodeIterator; +import org.forester.phylogeny.iterators.PreorderTreeIterator; import org.forester.util.BasicDescriptiveStatistics; import org.forester.util.DescriptiveStatistics; import org.forester.util.FailedConditionCheckException; import org.forester.util.ForesterUtil; +import org.forester.util.TaxonomyUtil; public class PhylogenyMethods { - private static PhylogenyMethods _instance = null; - private final Set _temp_hash_set = new HashSet(); - private PhylogenyNode _farthest_1 = null; - private PhylogenyNode _farthest_2 = null; + private static boolean _order_changed; private PhylogenyMethods() { // Hidden constructor. } - /** - * Calculates the distance between PhylogenyNodes node1 and node2. - * - * - * @param node1 - * @param node2 - * @return distance between node1 and node2 - */ - public double calculateDistance( final PhylogenyNode node1, final PhylogenyNode node2 ) { - final PhylogenyNode lca = obtainLCA( node1, node2 ); - final PhylogenyNode n1 = node1; - final PhylogenyNode n2 = node2; - return ( PhylogenyMethods.getDistance( n1, lca ) + PhylogenyMethods.getDistance( n2, lca ) ); + @Override + public Object clone() throws CloneNotSupportedException { + throw new CloneNotSupportedException(); } - public double calculateFurthestDistance( final Phylogeny phylogeny ) { - if ( phylogeny.getNumberOfExternalNodes() < 2 ) { - return 0.0; - } - _farthest_1 = null; - _farthest_2 = null; - PhylogenyNode node_1 = null; - PhylogenyNode node_2 = null; - double farthest_d = -Double.MAX_VALUE; - final PhylogenyMethods methods = PhylogenyMethods.getInstance(); - final List ext_nodes = phylogeny.getRoot().getAllExternalDescendants(); - for( int i = 1; i < ext_nodes.size(); ++i ) { - for( int j = 0; j < i; ++j ) { - final double d = methods.calculateDistance( ext_nodes.get( i ), ext_nodes.get( j ) ); - if ( d < 0.0 ) { - throw new RuntimeException( "distance cannot be negative" ); - } - if ( d > farthest_d ) { - farthest_d = d; - node_1 = ext_nodes.get( i ); - node_2 = ext_nodes.get( j ); + public static boolean extractFastaInformation( final Phylogeny phy ) { + boolean could_extract = false; + for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) { + final PhylogenyNode node = iter.next(); + if ( !ForesterUtil.isEmpty( node.getName() ) ) { + final Matcher name_m = FastaParser.FASTA_DESC_LINE.matcher( node.getName() ); + if ( name_m.lookingAt() ) { + could_extract = true; + final String acc_source = name_m.group( 1 ); + final String acc = name_m.group( 2 ); + final String seq_name = name_m.group( 3 ); + final String tax_sn = name_m.group( 4 ); + if ( !ForesterUtil.isEmpty( acc_source ) && !ForesterUtil.isEmpty( acc ) ) { + ForesterUtil.ensurePresenceOfSequence( node ); + node.getNodeData().getSequence( 0 ).setAccession( new Accession( acc, acc_source ) ); + } + if ( !ForesterUtil.isEmpty( seq_name ) ) { + ForesterUtil.ensurePresenceOfSequence( node ); + node.getNodeData().getSequence( 0 ).setName( seq_name ); + } + if ( !ForesterUtil.isEmpty( tax_sn ) ) { + ForesterUtil.ensurePresenceOfTaxonomy( node ); + node.getNodeData().getTaxonomy( 0 ).setScientificName( tax_sn ); + } } } } - _farthest_1 = node_1; - _farthest_2 = node_2; - return farthest_d; - } - - @Override - public Object clone() throws CloneNotSupportedException { - throw new CloneNotSupportedException(); + return could_extract; } - public PhylogenyNode getFarthestNode1() { - return _farthest_1; + public static DescriptiveStatistics calculateBranchLengthStatistics( final Phylogeny phy ) { + final DescriptiveStatistics stats = new BasicDescriptiveStatistics(); + for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { + final PhylogenyNode n = iter.next(); + if ( !n.isRoot() && ( n.getDistanceToParent() >= 0.0 ) ) { + stats.addValue( n.getDistanceToParent() ); + } + } + return stats; } - public PhylogenyNode getFarthestNode2() { - return _farthest_2; + public static List calculateConfidenceStatistics( final Phylogeny phy ) { + final List stats = new ArrayList(); + for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { + final PhylogenyNode n = iter.next(); + if ( !n.isExternal() && !n.isRoot() ) { + if ( n.getBranchData().isHasConfidences() ) { + for( int i = 0; i < n.getBranchData().getConfidences().size(); ++i ) { + final Confidence c = n.getBranchData().getConfidences().get( i ); + if ( ( i > ( stats.size() - 1 ) ) || ( stats.get( i ) == null ) ) { + stats.add( i, new BasicDescriptiveStatistics() ); + } + if ( !ForesterUtil.isEmpty( c.getType() ) ) { + if ( !ForesterUtil.isEmpty( stats.get( i ).getDescription() ) ) { + if ( !stats.get( i ).getDescription().equalsIgnoreCase( c.getType() ) ) { + throw new IllegalArgumentException( "support values in node [" + n.toString() + + "] appear inconsistently ordered" ); + } + } + stats.get( i ).setDescription( c.getType() ); + } + stats.get( i ).addValue( ( ( c != null ) && ( c.getValue() >= 0 ) ) ? c.getValue() : 0 ); + } + } + } + } + return stats; } /** - * Returns the LCA of PhylogenyNodes node1 and node2. - * - * + * Calculates the distance between PhylogenyNodes node1 and node2. + * + * * @param node1 * @param node2 - * @return LCA of node1 and node2 + * @return distance between node1 and node2 */ - public PhylogenyNode obtainLCA( final PhylogenyNode node1, final PhylogenyNode node2 ) { - _temp_hash_set.clear(); - PhylogenyNode n1 = node1; - PhylogenyNode n2 = node2; - _temp_hash_set.add( n1.getId() ); - while ( !n1.isRoot() ) { - n1 = n1.getParent(); - _temp_hash_set.add( n1.getId() ); - } - while ( !_temp_hash_set.contains( n2.getId() ) && !n2.isRoot() ) { - n2 = n2.getParent(); - } - if ( !_temp_hash_set.contains( n2.getId() ) ) { - throw new IllegalArgumentException( "attempt to get LCA of two nodes which do not share a common root" ); - } - return n2; + public static double calculateDistance( final PhylogenyNode node1, final PhylogenyNode node2 ) { + final PhylogenyNode lca = calculateLCA( node1, node2 ); + final PhylogenyNode n1 = node1; + final PhylogenyNode n2 = node2; + return ( PhylogenyMethods.getDistance( n1, lca ) + PhylogenyMethods.getDistance( n2, lca ) ); } /** - * Returns all orthologs of the external PhylogenyNode n of this Phylogeny. - * Orthologs are returned as List of node references. - *

- * PRECONDITION: This tree must be binary and rooted, and speciation - - * duplication need to be assigned for each of its internal Nodes. - *

- * Returns null if this Phylogeny is empty or if n is internal. - * @param n - * external PhylogenyNode whose orthologs are to be returned - * @return Vector of references to all orthologous Nodes of PhylogenyNode n - * of this Phylogeny, null if this Phylogeny is empty or if n is - * internal + * Returns the LCA of PhylogenyNodes node1 and node2. + * + * + * @param node1 + * @param node2 + * @return LCA of node1 and node2 */ - public List getOrthologousNodes( final Phylogeny phy, final PhylogenyNode node ) { - final List nodes = new ArrayList(); - final PhylogenyNodeIterator it = phy.iteratorExternalForward(); - while ( it.hasNext() ) { - final PhylogenyNode temp_node = it.next(); - if ( ( temp_node != node ) && isAreOrthologous( node, temp_node ) ) { - nodes.add( temp_node ); - } - } - return nodes; - } - - public boolean isAreOrthologous( final PhylogenyNode node1, final PhylogenyNode node2 ) { - return !obtainLCA( node1, node2 ).isDuplication(); - } - - static double addPhylogenyDistances( final double a, final double b ) { - if ( ( a >= 0.0 ) && ( b >= 0.0 ) ) { - return a + b; + public final static PhylogenyNode calculateLCA( PhylogenyNode node1, PhylogenyNode node2 ) { + if ( node1 == null ) { + throw new IllegalArgumentException( "first argument (node) is null" ); } - else if ( a >= 0.0 ) { - return a; + if ( node2 == null ) { + throw new IllegalArgumentException( "second argument (node) is null" ); } - else if ( b >= 0.0 ) { - return b; + if ( node1 == node2 ) { + return node1; } - return PhylogenyNode.DISTANCE_DEFAULT; - } - - // Helper for getUltraParalogousNodes( PhylogenyNode ). - public static boolean areAllChildrenDuplications( final PhylogenyNode n ) { - if ( n.isExternal() ) { - return false; + if ( ( node1.getParent() == node2.getParent() ) ) { + return node1.getParent(); } - else { - if ( n.isDuplication() ) { - //FIXME test me! - for( final PhylogenyNode desc : n.getDescendants() ) { - if ( !areAllChildrenDuplications( desc ) ) { - return false; - } - } - return true; + int depth1 = node1.calculateDepth(); + int depth2 = node2.calculateDepth(); + while ( ( depth1 > -1 ) && ( depth2 > -1 ) ) { + if ( depth1 > depth2 ) { + node1 = node1.getParent(); + depth1--; + } + else if ( depth2 > depth1 ) { + node2 = node2.getParent(); + depth2--; } else { - return false; + if ( node1 == node2 ) { + return node1; + } + node1 = node1.getParent(); + node2 = node2.getParent(); + depth1--; + depth2--; } } + throw new IllegalArgumentException( "illegal attempt to calculate LCA of two nodes which do not share a common root" ); } - public static int calculateDepth( final PhylogenyNode node ) { - PhylogenyNode n = node; - int steps = 0; - while ( !n.isRoot() ) { - steps++; - n = n.getParent(); + /** + * Returns the LCA of PhylogenyNodes node1 and node2. + * Precondition: ids are in pre-order (or level-order). + * + * + * @param node1 + * @param node2 + * @return LCA of node1 and node2 + */ + public final static PhylogenyNode calculateLCAonTreeWithIdsInPreOrder( PhylogenyNode node1, PhylogenyNode node2 ) { + if ( node1 == null ) { + throw new IllegalArgumentException( "first argument (node) is null" ); } - return steps; - } - - public static double calculateDistanceToRoot( final PhylogenyNode node ) { - PhylogenyNode n = node; - double d = 0.0; - while ( !n.isRoot() ) { - if ( n.getDistanceToParent() > 0.0 ) { - d += n.getDistanceToParent(); + if ( node2 == null ) { + throw new IllegalArgumentException( "second argument (node) is null" ); + } + while ( node1 != node2 ) { + if ( node1.getId() > node2.getId() ) { + node1 = node1.getParent(); + } + else { + node2 = node2.getParent(); } - n = n.getParent(); } - return d; + return node1; } public static short calculateMaxBranchesToLeaf( final PhylogenyNode node ) { @@ -253,7 +266,48 @@ public class PhylogenyMethods { int max = 0; for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) { final PhylogenyNode node = iter.next(); - final int steps = calculateDepth( node ); + final int steps = node.calculateDepth(); + if ( steps > max ) { + max = steps; + } + } + return max; + } + + public static String[] obtainPresentRanksSorted( final Phylogeny phy ) { + final Set present_ranks = new HashSet(); + for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { + final PhylogenyNode node = iter.next(); + if ( !node.isExternal() && !node.isRoot() && ( node.getNodeData().getTaxonomy() != null ) + && !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getRank() ) ) { + final String current_rank = node.getNodeData().getTaxonomy().getRank(); + if ( TaxonomyUtil.RANK_TO_INT.containsKey( current_rank ) ) { + present_ranks.add( current_rank ); + } + } + } + final String ordered_ranks[] = new String[present_ranks.size() + 1]; + int c = 0; + for( final String rank : TaxonomyUtil.RANKS ) { + if ( present_ranks.contains( rank ) ) { + ordered_ranks[ c++ ] = rank; + } + } + ordered_ranks[ c ] = "off"; + return ordered_ranks; + } + + public static int calculateMaxDepthConsiderCollapsed( final Phylogeny phy ) { + int max = 0; + for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) { + PhylogenyNode n = iter.next(); + int steps = 0; + while ( n.getParent() != null ) { + if ( !n.isCollapse() ) { + steps++; + } + n = n.getParent(); + } if ( steps > max ) { max = steps; } @@ -265,7 +319,7 @@ public class PhylogenyMethods { double max = 0.0; for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) { final PhylogenyNode node = iter.next(); - final double d = calculateDistanceToRoot( node ); + final double d = node.calculateDistanceToRoot(); if ( d > max ) { max = d; } @@ -273,166 +327,112 @@ public class PhylogenyMethods { return max; } - public static DescriptiveStatistics calculatNumberOfDescendantsPerNodeStatistics( final Phylogeny phy ) { - final DescriptiveStatistics stats = new BasicDescriptiveStatistics(); - for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { - final PhylogenyNode n = iter.next(); - if ( !n.isExternal() ) { - stats.addValue( n.getNumberOfDescendants() ); + public static PhylogenyNode calculateNodeWithMaxDistanceToRoot( final Phylogeny phy ) { + double max = 0.0; + PhylogenyNode max_node = phy.getFirstExternalNode(); + for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) { + final PhylogenyNode node = iter.next(); + final double d = node.calculateDistanceToRoot(); + if ( d > max ) { + max = d; + max_node = node; } } - return stats; + return max_node; + } + + public static int calculateNumberOfExternalNodesWithoutTaxonomy( final PhylogenyNode node ) { + final List descs = node.getAllExternalDescendants(); + int x = 0; + for( final PhylogenyNode n : descs ) { + if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) { + x++; + } + } + return x; } - public static DescriptiveStatistics calculatConfidenceStatistics( final Phylogeny phy ) { + public static DescriptiveStatistics calculateNumberOfDescendantsPerNodeStatistics( final Phylogeny phy ) { final DescriptiveStatistics stats = new BasicDescriptiveStatistics(); for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { final PhylogenyNode n = iter.next(); if ( !n.isExternal() ) { - if ( n.getBranchData().isHasConfidences() ) { - stats.addValue( n.getBranchData().getConfidence( 0 ).getValue() ); - } + stats.addValue( n.getNumberOfDescendants() ); } } return stats; } - /** - * Returns the set of distinct taxonomies of - * all external nodes of node. - * If at least one the external nodes has no taxonomy, - * null is returned. - * - */ - public static Set obtainDistinctTaxonomies( final PhylogenyNode node ) { - final List descs = node.getAllExternalDescendants(); - final Set tax_set = new HashSet(); - for( final PhylogenyNode n : descs ) { - if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) { - return null; - } - tax_set.add( n.getNodeData().getTaxonomy() ); + public final static void collapseSubtreeStructure( final PhylogenyNode n ) { + final List eds = n.getAllExternalDescendants(); + final List d = new ArrayList(); + for( final PhylogenyNode ed : eds ) { + d.add( calculateDistanceToAncestor( n, ed ) ); } - return tax_set; - } - - /** - * Returns a map of distinct taxonomies of - * all external nodes of node. - * If at least one of the external nodes has no taxonomy, - * null is returned. - * - */ - public static SortedMap obtainDistinctTaxonomyCounts( final PhylogenyNode node ) { - final List descs = node.getAllExternalDescendants(); - final SortedMap tax_map = new TreeMap(); - for( final PhylogenyNode n : descs ) { - if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) { - return null; - } - final Taxonomy t = n.getNodeData().getTaxonomy(); - if ( tax_map.containsKey( t ) ) { - tax_map.put( t, tax_map.get( t ) + 1 ); - } - else { - tax_map.put( t, 1 ); - } + for( int i = 0; i < eds.size(); ++i ) { + n.setChildNode( i, eds.get( i ) ); + eds.get( i ).setDistanceToParent( d.get( i ) ); } - return tax_map; } - public static int calculateNumberOfExternalNodesWithoutTaxonomy( final PhylogenyNode node ) { - final List descs = node.getAllExternalDescendants(); - int x = 0; - for( final PhylogenyNode n : descs ) { - if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) { - x++; + public static int countNumberOfOneDescendantNodes( final Phylogeny phy ) { + int count = 0; + for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { + final PhylogenyNode n = iter.next(); + if ( !n.isExternal() && ( n.getNumberOfDescendants() == 1 ) ) { + count++; } } - return x; + return count; } - /** - * Deep copies the phylogeny originating from this node. - */ - static PhylogenyNode copySubTree( final PhylogenyNode source ) { - if ( source == null ) { - return null; - } - else { - final PhylogenyNode newnode = source.copyNodeData(); - if ( !source.isExternal() ) { - for( int i = 0; i < source.getNumberOfDescendants(); ++i ) { - newnode.setChildNode( i, PhylogenyMethods.copySubTree( source.getChildNode( i ) ) ); - } + public static int countNumberOfPolytomies( final Phylogeny phy ) { + int count = 0; + for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { + final PhylogenyNode n = iter.next(); + if ( !n.isExternal() && ( n.getNumberOfDescendants() > 2 ) ) { + count++; } - return newnode; } + return count; } - /** - * Shallow copies the phylogeny originating from this node. - */ - static PhylogenyNode copySubTreeShallow( final PhylogenyNode source ) { - if ( source == null ) { - return null; - } - else { - final PhylogenyNode newnode = source.copyNodeDataShallow(); - if ( !source.isExternal() ) { - for( int i = 0; i < source.getNumberOfDescendants(); ++i ) { - newnode.setChildNode( i, PhylogenyMethods.copySubTreeShallow( source.getChildNode( i ) ) ); - } - } - return newnode; + public static final HashMap createNameToExtNodeMap( final Phylogeny phy ) { + final HashMap nodes = new HashMap(); + final List ext = phy.getExternalNodes(); + for( final PhylogenyNode n : ext ) { + nodes.put( n.getName(), n ); } + return nodes; } - public static void deleteExternalNodesNegativeSelection( final Set to_delete, final Phylogeny phy ) { - phy.hashIDs(); - for( final Integer id : to_delete ) { + public static void deleteExternalNodesNegativeSelection( final Set to_delete, final Phylogeny phy ) { + for( final Long id : to_delete ) { phy.deleteSubtree( phy.getNode( id ), true ); } - phy.hashIDs(); + phy.clearHashIdToNodeMap(); + phy.externalNodesHaveChanged(); } public static void deleteExternalNodesNegativeSelection( final String[] node_names_to_delete, final Phylogeny p ) throws IllegalArgumentException { - for( int i = 0; i < node_names_to_delete.length; ++i ) { - if ( ForesterUtil.isEmpty( node_names_to_delete[ i ] ) ) { + for( final String element : node_names_to_delete ) { + if ( ForesterUtil.isEmpty( element ) ) { continue; } List nodes = null; - nodes = p.getNodes( node_names_to_delete[ i ] ); + nodes = p.getNodes( element ); final Iterator it = nodes.iterator(); while ( it.hasNext() ) { final PhylogenyNode n = it.next(); if ( !n.isExternal() ) { - throw new IllegalArgumentException( "attempt to delete non-external node \"" - + node_names_to_delete[ i ] + "\"" ); + throw new IllegalArgumentException( "attempt to delete non-external node \"" + element + "\"" ); } p.deleteSubtree( n, true ); } } - } - - public static void deleteExternalNodesPositiveSelection( final Set species_to_keep, final Phylogeny phy ) { - // final Set to_delete = new HashSet(); - for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) { - final PhylogenyNode n = it.next(); - if ( n.getNodeData().isHasTaxonomy() ) { - if ( !species_to_keep.contains( n.getNodeData().getTaxonomy() ) ) { - //to_delete.add( n.getNodeId() ); - phy.deleteSubtree( n, true ); - } - } - else { - throw new IllegalArgumentException( "node " + n.getId() + " has no taxonomic data" ); - } - } - phy.hashIDs(); - phy.externalNodesHaveChanged(); - // deleteExternalNodesNegativeSelection( to_delete, phy ); + p.clearHashIdToNodeMap(); + p.externalNodesHaveChanged(); } public static List deleteExternalNodesPositiveSelection( final String[] node_names_to_keep, @@ -457,31 +457,101 @@ public class PhylogenyMethods { return deleted; } - public static List getAllDescendants( final PhylogenyNode node ) { - final List descs = new ArrayList(); - final Set encountered = new HashSet(); - if ( !node.isExternal() ) { - final List exts = node.getAllExternalDescendants(); - for( PhylogenyNode current : exts ) { - descs.add( current ); - while ( current != node ) { - current = current.getParent(); - if ( encountered.contains( current.getId() ) ) { - continue; - } - descs.add( current ); - encountered.add( current.getId() ); + public static void deleteExternalNodesPositiveSelectionT( final List species_to_keep, + final Phylogeny phy ) { + final Set to_delete = new HashSet(); + for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) { + final PhylogenyNode n = it.next(); + if ( n.getNodeData().isHasTaxonomy() ) { + if ( !species_to_keep.contains( n.getNodeData().getTaxonomy() ) ) { + to_delete.add( n.getId() ); } } + else { + throw new IllegalArgumentException( "node " + n.getId() + " has no taxonomic data" ); + } } - return descs; + deleteExternalNodesNegativeSelection( to_delete, phy ); } - /** - * - * Convenience method - * - * @param node + final public static void deleteInternalNodesWithOnlyOneDescendent( final Phylogeny phy ) { + final ArrayList to_delete = new ArrayList(); + for( final PhylogenyNodeIterator iter = phy.iteratorPostorder(); iter.hasNext(); ) { + final PhylogenyNode n = iter.next(); + if ( ( !n.isExternal() ) && ( n.getNumberOfDescendants() == 1 ) ) { + to_delete.add( n ); + } + } + for( final PhylogenyNode d : to_delete ) { + PhylogenyMethods.removeNode( d, phy ); + } + phy.clearHashIdToNodeMap(); + phy.externalNodesHaveChanged(); + } + + final public static void deleteNonOrthologousExternalNodes( final Phylogeny phy, final PhylogenyNode n ) { + if ( n.isInternal() ) { + throw new IllegalArgumentException( "node is not external" ); + } + final ArrayList to_delete = new ArrayList(); + for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) { + final PhylogenyNode i = it.next(); + if ( !PhylogenyMethods.getEventAtLCA( n, i ).isSpeciation() ) { + to_delete.add( i ); + } + } + for( final PhylogenyNode d : to_delete ) { + phy.deleteSubtree( d, true ); + } + phy.clearHashIdToNodeMap(); + phy.externalNodesHaveChanged(); + } + + public final static List> divideIntoSubTrees( final Phylogeny phy, + final double min_distance_to_root ) { + if ( min_distance_to_root <= 0 ) { + throw new IllegalArgumentException( "attempt to use min distance to root of: " + min_distance_to_root ); + } + final List> l = new ArrayList>(); + setAllIndicatorsToZero( phy ); + for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) { + final PhylogenyNode n = it.next(); + if ( n.getIndicator() != 0 ) { + continue; + } + l.add( divideIntoSubTreesHelper( n, min_distance_to_root ) ); + if ( l.isEmpty() ) { + throw new RuntimeException( "this should not have happened" ); + } + } + return l; + } + + public static List getAllDescendants( final PhylogenyNode node ) { + final List descs = new ArrayList(); + final Set encountered = new HashSet(); + if ( !node.isExternal() ) { + final List exts = node.getAllExternalDescendants(); + for( PhylogenyNode current : exts ) { + descs.add( current ); + while ( current != node ) { + current = current.getParent(); + if ( encountered.contains( current.getId() ) ) { + continue; + } + descs.add( current ); + encountered.add( current.getId() ); + } + } + } + return descs; + } + + /** + * + * Convenience method + * + * @param node * @return */ public static Color getBranchColorValue( final PhylogenyNode node ) { @@ -526,30 +596,14 @@ public class PhylogenyMethods { return values; } - /** - * Calculates the distance between PhylogenyNodes n1 and n2. - * PRECONDITION: n1 is a descendant of n2. - * - * @param n1 - * a descendant of n2 - * @param n2 - * @return distance between n1 and n2 - */ - private static double getDistance( PhylogenyNode n1, final PhylogenyNode n2 ) { - double d = 0.0; - while ( n1 != n2 ) { - if ( n1.getDistanceToParent() > 0.0 ) { - d += n1.getDistanceToParent(); - } - n1 = n1.getParent(); - } - return d; + final public static Event getEventAtLCA( final PhylogenyNode n1, final PhylogenyNode n2 ) { + return calculateLCA( n1, n2 ).getNodeData().getEvent(); } /** - * Returns taxonomy t if all external descendants have + * Returns taxonomy t if all external descendants have * the same taxonomy t, null otherwise. - * + * */ public static Taxonomy getExternalDescendantsTaxonomy( final PhylogenyNode node ) { final List descs = node.getAllExternalDescendants(); @@ -581,13 +635,12 @@ public class PhylogenyMethods { return farthest; } - public static PhylogenyMethods getInstance() { - if ( PhylogenyMethods._instance == null ) { - PhylogenyMethods._instance = new PhylogenyMethods(); - } - return PhylogenyMethods._instance; - } - + // public static PhylogenyMethods getInstance() { + // if ( PhylogenyMethods._instance == null ) { + // PhylogenyMethods._instance = new PhylogenyMethods(); + // } + // return PhylogenyMethods._instance; + // } /** * Returns the largest confidence value found on phy. */ @@ -626,79 +679,18 @@ public class PhylogenyMethods { if ( !node.getNodeData().isHasTaxonomy() ) { return ""; } - if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getTaxonomyCode() ) ) { - return node.getNodeData().getTaxonomy().getTaxonomyCode(); - } else if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getScientificName() ) ) { return node.getNodeData().getTaxonomy().getScientificName(); } + if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getTaxonomyCode() ) ) { + return node.getNodeData().getTaxonomy().getTaxonomyCode(); + } else { return node.getNodeData().getTaxonomy().getCommonName(); } } /** - * Returns all Nodes which are connected to external PhylogenyNode n of this - * Phylogeny by a path containing only speciation events. We call these - * "super orthologs". Nodes are returned as Vector of references to Nodes. - *

- * PRECONDITION: This tree must be binary and rooted, and speciation - - * duplication need to be assigned for each of its internal Nodes. - *

- * Returns null if this Phylogeny is empty or if n is internal. - * @param n - * external PhylogenyNode whose strictly speciation related Nodes - * are to be returned - * @return Vector of references to all strictly speciation related Nodes of - * PhylogenyNode n of this Phylogeny, null if this Phylogeny is - * empty or if n is internal - */ - public static List getSuperOrthologousNodes( final PhylogenyNode n ) { - // FIXME - PhylogenyNode node = n, deepest = null; - final List v = new ArrayList(); - if ( !node.isExternal() ) { - return null; - } - while ( !node.isRoot() && !node.getParent().isDuplication() ) { - node = node.getParent(); - } - deepest = node; - deepest.setIndicatorsToZero(); - do { - if ( !node.isExternal() ) { - if ( node.getIndicator() == 0 ) { - node.setIndicator( ( byte ) 1 ); - if ( !node.isDuplication() ) { - node = node.getChildNode1(); - } - } - if ( node.getIndicator() == 1 ) { - node.setIndicator( ( byte ) 2 ); - if ( !node.isDuplication() ) { - node = node.getChildNode2(); - } - } - if ( ( node != deepest ) && ( node.getIndicator() == 2 ) ) { - node = node.getParent(); - } - } - else { - if ( node != n ) { - v.add( node ); - } - if ( node != deepest ) { - node = node.getParent(); - } - else { - node.setIndicator( ( byte ) 2 ); - } - } - } while ( ( node != deepest ) || ( deepest.getIndicator() != 2 ) ); - return v; - } - - /** * Convenience method for display purposes. * Not intended for algorithms. */ @@ -709,73 +701,23 @@ public class PhylogenyMethods { return node.getNodeData().getTaxonomy().getIdentifier().getValue(); } - /** - * Returns all Nodes which are connected to external PhylogenyNode n of this - * Phylogeny by a path containing, and leading to, only duplication events. - * We call these "ultra paralogs". Nodes are returned as Vector of - * references to Nodes. - *

- * PRECONDITION: This tree must be binary and rooted, and speciation - - * duplication need to be assigned for each of its internal Nodes. - *

- * Returns null if this Phylogeny is empty or if n is internal. - *

- * (Last modified: 10/06/01) - * - * @param n - * external PhylogenyNode whose ultra paralogs are to be returned - * @return Vector of references to all ultra paralogs of PhylogenyNode n of - * this Phylogeny, null if this Phylogeny is empty or if n is - * internal - */ - public static List getUltraParalogousNodes( final PhylogenyNode n ) { - // FIXME test me - PhylogenyNode node = n; - if ( !node.isExternal() ) { - return null; - } - while ( !node.isRoot() && node.getParent().isDuplication() && areAllChildrenDuplications( node.getParent() ) ) { - node = node.getParent(); + public final static boolean isAllDecendentsAreDuplications( final PhylogenyNode n ) { + if ( n.isExternal() ) { + return true; } - final List nodes = node.getAllExternalDescendants(); - nodes.remove( n ); - return nodes; - } - - public static String inferCommonPartOfScientificNameOfDescendants( final PhylogenyNode node ) { - final List descs = node.getDescendants(); - String sn = null; - for( final PhylogenyNode n : descs ) { - if ( !n.getNodeData().isHasTaxonomy() - || ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getScientificName() ) ) { - return null; - } - else if ( sn == null ) { - sn = n.getNodeData().getTaxonomy().getScientificName().trim(); - } - else { - String sn_current = n.getNodeData().getTaxonomy().getScientificName().trim(); - if ( !sn.equals( sn_current ) ) { - boolean overlap = false; - while ( ( sn.indexOf( ' ' ) >= 0 ) || ( sn_current.indexOf( ' ' ) >= 0 ) ) { - if ( ForesterUtil.countChars( sn, ' ' ) > ForesterUtil.countChars( sn_current, ' ' ) ) { - sn = sn.substring( 0, sn.lastIndexOf( ' ' ) ).trim(); - } - else { - sn_current = sn_current.substring( 0, sn_current.lastIndexOf( ' ' ) ).trim(); - } - if ( sn.equals( sn_current ) ) { - overlap = true; - break; - } - } - if ( !overlap ) { - return null; + else { + if ( n.isDuplication() ) { + for( final PhylogenyNode desc : n.getDescendants() ) { + if ( !isAllDecendentsAreDuplications( desc ) ) { + return false; } } + return true; + } + else { + return false; } } - return sn; } public static boolean isHasExternalDescendant( final PhylogenyNode node ) { @@ -789,7 +731,7 @@ public class PhylogenyMethods { /* * This is case insensitive. - * + * */ public synchronized static boolean isTaxonomyHasIdentifierOfGivenProvider( final Taxonomy tax, final String[] providers ) { @@ -807,58 +749,45 @@ public class PhylogenyMethods { } } - private static boolean match( final String s, - final String query, - final boolean case_sensitive, - final boolean partial ) { - if ( ForesterUtil.isEmpty( s ) || ForesterUtil.isEmpty( query ) ) { - return false; - } - String my_s = s.trim(); - String my_query = query.trim(); - if ( !case_sensitive ) { - my_s = my_s.toLowerCase(); - my_query = my_query.toLowerCase(); - } - if ( partial ) { - return my_s.indexOf( my_query ) >= 0; - } - else { - return my_s.equals( my_query ); - } - } - public static void midpointRoot( final Phylogeny phylogeny ) { - if ( phylogeny.getNumberOfExternalNodes() < 2 ) { - return; - } - final PhylogenyMethods methods = getInstance(); - final double farthest_d = methods.calculateFurthestDistance( phylogeny ); - final PhylogenyNode f1 = methods.getFarthestNode1(); - final PhylogenyNode f2 = methods.getFarthestNode2(); - if ( farthest_d <= 0.0 ) { + if ( ( phylogeny.getNumberOfExternalNodes() < 2 ) || ( calculateMaxDistanceToRoot( phylogeny ) <= 0 ) ) { return; } - double x = farthest_d / 2.0; - PhylogenyNode n = f1; - if ( PhylogenyMethods.getDistance( f1, phylogeny.getRoot() ) < PhylogenyMethods.getDistance( f2, phylogeny - .getRoot() ) ) { - n = f2; - } - while ( ( x > n.getDistanceToParent() ) && !n.isRoot() ) { - x -= ( n.getDistanceToParent() > 0 ? n.getDistanceToParent() : 0 ); - n = n.getParent(); + int counter = 0; + final int total_nodes = phylogeny.getNodeCount(); + while ( true ) { + if ( ++counter > total_nodes ) { + throw new RuntimeException( "this should not have happened: midpoint rooting does not converge" ); + } + PhylogenyNode a = null; + double da = 0; + double db = 0; + for( int i = 0; i < phylogeny.getRoot().getNumberOfDescendants(); ++i ) { + final PhylogenyNode f = getFurthestDescendant( phylogeny.getRoot().getChildNode( i ) ); + final double df = getDistance( f, phylogeny.getRoot() ); + if ( df > 0 ) { + if ( df > da ) { + db = da; + da = df; + a = f; + } + else if ( df > db ) { + db = df; + } + } + } + final double diff = da - db; + if ( diff < 0.000001 ) { + break; + } + double x = da - ( diff / 2.0 ); + while ( ( x > a.getDistanceToParent() ) && !a.isRoot() ) { + x -= ( a.getDistanceToParent() > 0 ? a.getDistanceToParent() : 0 ); + a = a.getParent(); + } + phylogeny.reRoot( a, x ); } - phylogeny.reRoot( n, x ); phylogeny.recalculateNumberOfExternalDescendants( true ); - final PhylogenyNode a = getFurthestDescendant( phylogeny.getRoot().getChildNode1() ); - final PhylogenyNode b = getFurthestDescendant( phylogeny.getRoot().getChildNode2() ); - final double da = getDistance( a, phylogeny.getRoot() ); - final double db = getDistance( b, phylogeny.getRoot() ); - if ( Math.abs( da - db ) > 0.000001 ) { - throw new FailedConditionCheckException( "this should not have happened: midpoint rooting failed: da=" - + da + ", db=" + db + ", diff=" + Math.abs( da - db ) ); - } } public static void normalizeBootstrapValues( final Phylogeny phylogeny, @@ -891,6 +820,90 @@ public class PhylogenyMethods { return nodes; } + /** + * Returns a map of distinct taxonomies of + * all external nodes of node. + * If at least one of the external nodes has no taxonomy, + * null is returned. + * + */ + public static Map obtainDistinctTaxonomyCounts( final PhylogenyNode node ) { + final List descs = node.getAllExternalDescendants(); + final Map tax_map = new HashMap(); + for( final PhylogenyNode n : descs ) { + if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) { + return null; + } + final Taxonomy t = n.getNodeData().getTaxonomy(); + if ( tax_map.containsKey( t ) ) { + tax_map.put( t, tax_map.get( t ) + 1 ); + } + else { + tax_map.put( t, 1 ); + } + } + return tax_map; + } + + /** + * Arranges the order of childern for each node of this Phylogeny in such a + * way that either the branch with more children is on top (right) or on + * bottom (left), dependent on the value of boolean order. + * + * @param order + * decides in which direction to order + * @param pri + */ + public static void orderAppearance( final PhylogenyNode n, + final boolean order, + final boolean order_ext_alphabetically, + final DESCENDANT_SORT_PRIORITY pri ) { + if ( n.isExternal() ) { + return; + } + else { + if ( ( n.getNumberOfDescendants() == 2 ) + && ( n.getChildNode1().getNumberOfExternalNodes() != n.getChildNode2().getNumberOfExternalNodes() ) + && ( ( n.getChildNode1().getNumberOfExternalNodes() < n.getChildNode2() + .getNumberOfExternalNodes() ) == order ) ) { + final PhylogenyNode temp = n.getChildNode1(); + n.setChild1( n.getChildNode2() ); + n.setChild2( temp ); + _order_changed = true; + } + else if ( order_ext_alphabetically ) { + boolean all_ext = true; + for( final PhylogenyNode i : n.getDescendants() ) { + if ( !i.isExternal() ) { + all_ext = false; + break; + } + } + if ( all_ext ) { + PhylogenyMethods.sortNodeDescendents( n, pri ); + } + } + for( int i = 0; i < n.getNumberOfDescendants(); ++i ) { + orderAppearance( n.getChildNode( i ), order, order_ext_alphabetically, pri ); + } + } + } + + public synchronized static void orderAppearanceX( final PhylogenyNode n, + final boolean order_ext_alphabetically, + final DESCENDANT_SORT_PRIORITY pri ) { + if ( n.isExternal() ) { + return; + } + else { + _order_changed = false; + orderAppearance( n, true, order_ext_alphabetically, pri ); + if ( !_order_changed ) { + orderAppearance( n, false, order_ext_alphabetically, pri ); + } + } + } + public static void postorderBranchColorAveragingExternalNodeBased( final Phylogeny p ) { for( final PhylogenyNodeIterator iter = p.iteratorPostorder(); iter.hasNext(); ) { final PhylogenyNode node = iter.next(); @@ -899,8 +912,9 @@ public class PhylogenyMethods { double blue = 0.0; int n = 0; if ( node.isInternal() ) { - for( final PhylogenyNodeIterator iterator = node.iterateChildNodesForward(); iterator.hasNext(); ) { - final PhylogenyNode child_node = iterator.next(); + //for( final PhylogenyNodeIterator iterator = node.iterateChildNodesForward(); iterator.hasNext(); ) { + for( int i = 0; i < node.getNumberOfDescendants(); ++i ) { + final PhylogenyNode child_node = node.getChildNode( i ); final Color child_color = getBranchColorValue( child_node ); if ( child_color != null ) { ++n; @@ -917,12 +931,60 @@ public class PhylogenyMethods { } } + public static final void preOrderReId( final Phylogeny phy ) { + if ( phy.isEmpty() ) { + return; + } + phy.setIdToNodeMap( null ); + long i = PhylogenyNode.getNodeCount(); + for( final PhylogenyNodeIterator it = phy.iteratorPreorder(); it.hasNext(); ) { + it.next().setId( i++ ); + } + PhylogenyNode.setNodeCount( i ); + } + + public final static Phylogeny[] readPhylogenies( final PhylogenyParser parser, final File file ) + throws IOException { + final PhylogenyFactory factory = ParserBasedPhylogenyFactory.getInstance(); + final Phylogeny[] trees = factory.create( file, parser ); + if ( ( trees == null ) || ( trees.length == 0 ) ) { + throw new PhylogenyParserException( "Unable to parse phylogeny from file: " + file ); + } + return trees; + } + + public final static Phylogeny[] readPhylogenies( final PhylogenyParser parser, final List files ) + throws IOException { + final List tree_list = new ArrayList(); + for( final File file : files ) { + final PhylogenyFactory factory = ParserBasedPhylogenyFactory.getInstance(); + final Phylogeny[] trees = factory.create( file, parser ); + if ( ( trees == null ) || ( trees.length == 0 ) ) { + throw new PhylogenyParserException( "Unable to parse phylogeny from file: " + file ); + } + tree_list.addAll( Arrays.asList( trees ) ); + } + return tree_list.toArray( new Phylogeny[ tree_list.size() ] ); + } + public static void removeNode( final PhylogenyNode remove_me, final Phylogeny phylogeny ) { if ( remove_me.isRoot() ) { - throw new IllegalArgumentException( "ill advised attempt to remove root node" ); + if ( remove_me.getNumberOfDescendants() == 1 ) { + final PhylogenyNode desc = remove_me.getDescendants().get( 0 ); + desc.setDistanceToParent( addPhylogenyDistances( remove_me.getDistanceToParent(), + desc.getDistanceToParent() ) ); + desc.setParent( null ); + phylogeny.setRoot( desc ); + phylogeny.clearHashIdToNodeMap(); + } + else { + throw new IllegalArgumentException( "attempt to remove a root node with more than one descendants" ); + } } - if ( remove_me.isExternal() ) { + else if ( remove_me.isExternal() ) { phylogeny.deleteSubtree( remove_me, false ); + phylogeny.clearHashIdToNodeMap(); + phylogeny.externalNodesHaveChanged(); } else { final PhylogenyNode parent = remove_me.getParent(); @@ -934,216 +996,418 @@ public class PhylogenyMethods { desc.getDistanceToParent() ) ); } remove_me.setParent( null ); - phylogeny.setIdHash( null ); + phylogeny.clearHashIdToNodeMap(); phylogeny.externalNodesHaveChanged(); } } - public static List searchData( final String query, - final Phylogeny phy, - final boolean case_sensitive, - final boolean partial ) { - final List nodes = new ArrayList(); + private static enum NDF { + NodeName( "NN" ), + TaxonomyCode( "TC" ), + TaxonomyCommonName( "CN" ), + TaxonomyScientificName( "TS" ), + TaxonomyIdentifier( "TI" ), + TaxonomySynonym( "SY" ), + SequenceName( "SN" ), + GeneName( "GN" ), + SequenceSymbol( "SS" ), + SequenceAccession( "SA" ), + Domain( "DO" ), + Annotation( "AN" ), + CrossRef( "XR" ), + BinaryCharacter( "BC" ), + MolecularSequence( "MS" ); + + private final String _text; + + NDF( final String text ) { + _text = text; + } + + public static NDF fromString( final String text ) { + for( final NDF n : NDF.values() ) { + if ( text.startsWith( n._text ) ) { + return n; + } + } + return null; + } + } + + public static List searchData( final String query, + final Phylogeny phy, + final boolean case_sensitive, + final boolean partial, + final boolean regex, + final boolean search_domains, + final double domains_confidence_threshold ) { + final List nodes = new ArrayList(); if ( phy.isEmpty() || ( query == null ) ) { return nodes; } if ( ForesterUtil.isEmpty( query ) ) { return nodes; } + String my_query = query; + NDF ndf = null; + if ( ( my_query.length() > 2 ) && ( my_query.indexOf( ":" ) == 2 ) ) { + ndf = NDF.fromString( my_query ); + if ( ndf != null ) { + my_query = my_query.substring( 3 ); + } + } for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { final PhylogenyNode node = iter.next(); boolean match = false; - if ( match( node.getName(), query, case_sensitive, partial ) ) { + if ( ( ( ndf == null ) || ( ndf == NDF.NodeName ) ) + && match( node.getName(), my_query, case_sensitive, partial, regex ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyCode ) ) && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), + my_query, + case_sensitive, + partial, + regex ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getCommonName(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyCommonName ) ) && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getCommonName(), + my_query, + case_sensitive, + partial, + regex ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getScientificName(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyScientificName ) ) && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getScientificName(), + my_query, + case_sensitive, + partial, + regex ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyIdentifier ) ) && node.getNodeData().isHasTaxonomy() && ( node.getNodeData().getTaxonomy().getIdentifier() != null ) && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(), - query, + my_query, case_sensitive, - partial ) ) { + partial, + regex ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomySynonym ) ) && node.getNodeData().isHasTaxonomy() + && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) { final List syns = node.getNodeData().getTaxonomy().getSynonyms(); I: for( final String syn : syns ) { - if ( match( syn, query, case_sensitive, partial ) ) { + if ( match( syn, my_query, case_sensitive, partial, regex ) ) { match = true; break I; } } } - if ( !match && node.getNodeData().isHasSequence() - && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceName ) ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getName(), my_query, case_sensitive, partial, regex ) ) { match = true; } - if ( !match && node.getNodeData().isHasSequence() - && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.GeneName ) ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getGeneName(), + my_query, + case_sensitive, + partial, + regex ) ) { match = true; } - if ( !match - && node.getNodeData().isHasSequence() + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceSymbol ) ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getSymbol(), + my_query, + case_sensitive, + partial, + regex ) ) { + match = true; + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceAccession ) ) && node.getNodeData().isHasSequence() && ( node.getNodeData().getSequence().getAccession() != null ) && match( node.getNodeData().getSequence().getAccession().getValue(), - query, + my_query, case_sensitive, - partial ) ) { + partial, + regex ) ) { match = true; } - if ( !match && node.getNodeData().isHasSequence() + if ( !match && ( ( ( ndf == null ) && search_domains ) || ( ndf == NDF.Domain ) ) + && node.getNodeData().isHasSequence() && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) { final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture(); I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) { - if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial ) ) { + if ( ( da.getDomain( i ).getConfidence() <= domains_confidence_threshold ) + && ( match( da.getDomain( i ).getName(), my_query, case_sensitive, partial, regex ) ) ) { match = true; break I; } } } - if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) { - final String[] bcp_ary = node.getNodeData().getBinaryCharacters().getPresentCharactersAsStringArray(); - I: for( final String bc : bcp_ary ) { - if ( match( bc, query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.Annotation ) ) && node.getNodeData().isHasSequence() + && ( node.getNodeData().getSequence().getAnnotations() != null ) ) { + for( final Annotation ann : node.getNodeData().getSequence().getAnnotations() ) { + if ( match( ann.getDesc(), my_query, case_sensitive, partial, regex ) ) { + match = true; + break; + } + if ( match( ann.getRef(), my_query, case_sensitive, partial, regex ) ) { + match = true; + break; + } + } + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.CrossRef ) ) && node.getNodeData().isHasSequence() + && ( node.getNodeData().getSequence().getCrossReferences() != null ) ) { + for( final Accession x : node.getNodeData().getSequence().getCrossReferences() ) { + if ( match( x.getComment(), my_query, case_sensitive, partial, regex ) ) { + match = true; + break; + } + if ( match( x.getSource(), my_query, case_sensitive, partial, regex ) ) { + match = true; + break; + } + if ( match( x.getValue(), my_query, case_sensitive, partial, regex ) ) { + match = true; + break; + } + } + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.BinaryCharacter ) ) + && ( node.getNodeData().getBinaryCharacters() != null ) ) { + Iterator it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator(); + I: while ( it.hasNext() ) { + if ( match( it.next(), my_query, case_sensitive, partial, regex ) ) { match = true; break I; } } - final String[] bcg_ary = node.getNodeData().getBinaryCharacters().getGainedCharactersAsStringArray(); - I: for( final String bc : bcg_ary ) { - if ( match( bc, query, case_sensitive, partial ) ) { + it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator(); + I: while ( it.hasNext() ) { + if ( match( it.next(), my_query, case_sensitive, partial, regex ) ) { match = true; break I; } } } + if ( !match && ( ndf == NDF.MolecularSequence ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getMolecularSequence(), + my_query, + case_sensitive, + true, + regex ) ) { + match = true; + } if ( match ) { - nodes.add( node ); + nodes.add( node.getId() ); } } return nodes; } - public static List searchDataLogicalAnd( final String[] queries, - final Phylogeny phy, - final boolean case_sensitive, - final boolean partial ) { - final List nodes = new ArrayList(); + public static List searchDataLogicalAnd( final String[] queries, + final Phylogeny phy, + final boolean case_sensitive, + final boolean partial, + final boolean search_domains, + final double domains_confidence_threshold ) { + final List nodes = new ArrayList(); if ( phy.isEmpty() || ( queries == null ) || ( queries.length < 1 ) ) { return nodes; } for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) { final PhylogenyNode node = iter.next(); boolean all_matched = true; - for( final String query : queries ) { + for( String query : queries ) { + if ( query == null ) { + continue; + } + query = query.trim(); + NDF ndf = null; + if ( ( query.length() > 2 ) && ( query.indexOf( ":" ) == 2 ) ) { + ndf = NDF.fromString( query ); + if ( ndf != null ) { + query = query.substring( 3 ); + } + } boolean match = false; if ( ForesterUtil.isEmpty( query ) ) { continue; } - if ( match( node.getName(), query, case_sensitive, partial ) ) { + if ( ( ( ndf == null ) || ( ndf == NDF.NodeName ) ) + && match( node.getName(), query, case_sensitive, partial, false ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyCode ) ) && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), + query, + case_sensitive, + partial, + false ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getCommonName(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyCommonName ) ) && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getCommonName(), + query, + case_sensitive, + partial, + false ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() - && match( node.getNodeData().getTaxonomy().getScientificName(), query, case_sensitive, partial ) ) { + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyScientificName ) ) + && node.getNodeData().isHasTaxonomy() + && match( node.getNodeData().getTaxonomy().getScientificName(), + query, + case_sensitive, + partial, + false ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomyIdentifier ) ) && node.getNodeData().isHasTaxonomy() && ( node.getNodeData().getTaxonomy().getIdentifier() != null ) && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(), query, case_sensitive, - partial ) ) { + partial, + false ) ) { match = true; } - else if ( node.getNodeData().isHasTaxonomy() + else if ( ( ( ndf == null ) || ( ndf == NDF.TaxonomySynonym ) ) && node.getNodeData().isHasTaxonomy() && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) { final List syns = node.getNodeData().getTaxonomy().getSynonyms(); I: for( final String syn : syns ) { - if ( match( syn, query, case_sensitive, partial ) ) { + if ( match( syn, query, case_sensitive, partial, false ) ) { match = true; break I; } } } - if ( !match && node.getNodeData().isHasSequence() - && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceName ) ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getName(), + query, + case_sensitive, + partial, + false ) ) { match = true; } - if ( !match && node.getNodeData().isHasSequence() - && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.GeneName ) ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getGeneName(), + query, + case_sensitive, + partial, + false ) ) { match = true; } - if ( !match + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceSymbol ) ) + && node.getNodeData().isHasSequence() && match( node.getNodeData().getSequence().getSymbol(), + query, + case_sensitive, + partial, + false ) ) { + match = true; + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.SequenceAccession ) ) && node.getNodeData().isHasSequence() && ( node.getNodeData().getSequence().getAccession() != null ) && match( node.getNodeData().getSequence().getAccession().getValue(), query, case_sensitive, - partial ) ) { + partial, + false ) ) { match = true; } - if ( !match && node.getNodeData().isHasSequence() + if ( !match && ( ( ( ndf == null ) && search_domains ) || ( ndf == NDF.Domain ) ) + && node.getNodeData().isHasSequence() && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) { final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture(); I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) { - if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial ) ) { + if ( ( da.getDomain( i ).getConfidence() <= domains_confidence_threshold ) + && match( da.getDomain( i ).getName(), query, case_sensitive, partial, false ) ) { match = true; break I; } } } - if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) { - final String[] bcp_ary = node.getNodeData().getBinaryCharacters() - .getPresentCharactersAsStringArray(); - I: for( final String bc : bcp_ary ) { - if ( match( bc, query, case_sensitive, partial ) ) { + if ( !match && ( ( ndf == null ) || ( ndf == NDF.Annotation ) ) && node.getNodeData().isHasSequence() + && ( node.getNodeData().getSequence().getAnnotations() != null ) ) { + for( final Annotation ann : node.getNodeData().getSequence().getAnnotations() ) { + if ( match( ann.getDesc(), query, case_sensitive, partial, false ) ) { + match = true; + break; + } + if ( match( ann.getRef(), query, case_sensitive, partial, false ) ) { + match = true; + break; + } + } + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.CrossRef ) ) && node.getNodeData().isHasSequence() + && ( node.getNodeData().getSequence().getCrossReferences() != null ) ) { + for( final Accession x : node.getNodeData().getSequence().getCrossReferences() ) { + if ( match( x.getComment(), query, case_sensitive, partial, false ) ) { + match = true; + break; + } + if ( match( x.getSource(), query, case_sensitive, partial, false ) ) { + match = true; + break; + } + if ( match( x.getValue(), query, case_sensitive, partial, false ) ) { + match = true; + break; + } + } + } + if ( !match && ( ( ndf == null ) || ( ndf == NDF.BinaryCharacter ) ) + && ( node.getNodeData().getBinaryCharacters() != null ) ) { + Iterator it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator(); + I: while ( it.hasNext() ) { + if ( match( it.next(), query, case_sensitive, partial, false ) ) { match = true; break I; } } - final String[] bcg_ary = node.getNodeData().getBinaryCharacters() - .getGainedCharactersAsStringArray(); - I: for( final String bc : bcg_ary ) { - if ( match( bc, query, case_sensitive, partial ) ) { + it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator(); + I: while ( it.hasNext() ) { + if ( match( it.next(), query, case_sensitive, partial, false ) ) { match = true; break I; } } } + if ( !match && ( ndf == NDF.MolecularSequence ) && node.getNodeData().isHasSequence() + && match( node.getNodeData().getSequence().getMolecularSequence(), + query, + case_sensitive, + true, + false ) ) { + match = true; + } if ( !match ) { all_matched = false; break; } } if ( all_matched ) { - nodes.add( node ); + nodes.add( node.getId() ); } } return nodes; } + public static void setAllIndicatorsToZero( final Phylogeny phy ) { + for( final PhylogenyNodeIterator it = phy.iteratorPostorder(); it.hasNext(); ) { + it.next().setIndicator( ( byte ) 0 ); + } + } + /** * Convenience method. - * Sets value for the first confidence value (created if not present, values overwritten otherwise). + * Sets value for the first confidence value (created if not present, values overwritten otherwise). */ public static void setBootstrapConfidence( final PhylogenyNode node, final double bootstrap_confidence_value ) { setConfidence( node, bootstrap_confidence_value, "bootstrap" ); @@ -1165,7 +1429,7 @@ public class PhylogenyMethods { /** * Convenience method. - * Sets value for the first confidence value (created if not present, values overwritten otherwise). + * Sets value for the first confidence value (created if not present, values overwritten otherwise). */ public static void setConfidence( final PhylogenyNode node, final double confidence_value ) { setConfidence( node, confidence_value, "" ); @@ -1173,7 +1437,7 @@ public class PhylogenyMethods { /** * Convenience method. - * Sets value for the first confidence value (created if not present, values overwritten otherwise). + * Sets value for the first confidence value (created if not present, values overwritten otherwise). */ public static void setConfidence( final PhylogenyNode node, final double confidence_value, final String type ) { Confidence c = null; @@ -1197,43 +1461,686 @@ public class PhylogenyMethods { /** * Convenience method to set the taxonomy code of a phylogeny node. - * - * + * + * * @param node * @param taxonomy_code + * @throws PhyloXmlDataFormatException */ - public static void setTaxonomyCode( final PhylogenyNode node, final String taxonomy_code ) { + public static void setTaxonomyCode( final PhylogenyNode node, final String taxonomy_code ) + throws PhyloXmlDataFormatException { if ( !node.getNodeData().isHasTaxonomy() ) { node.getNodeData().setTaxonomy( new Taxonomy() ); } node.getNodeData().getTaxonomy().setTaxonomyCode( taxonomy_code ); } + final static public void sortNodeDescendents( final PhylogenyNode node, final DESCENDANT_SORT_PRIORITY pri ) { + Comparator c; + switch ( pri ) { + case SEQUENCE: + c = new PhylogenyNodeSortSequencePriority(); + break; + case NODE_NAME: + c = new PhylogenyNodeSortNodeNamePriority(); + break; + default: + c = new PhylogenyNodeSortTaxonomyPriority(); + } + final List descs = node.getDescendants(); + Collections.sort( descs, c ); + int i = 0; + for( final PhylogenyNode desc : descs ) { + node.setChildNode( i++, desc ); + } + } + /** * Removes from Phylogeny to_be_stripped all external Nodes which are * associated with a species NOT found in Phylogeny reference. - * + * * @param reference * a reference Phylogeny * @param to_be_stripped * Phylogeny to be stripped - * @return number of external nodes removed from to_be_stripped + * @return nodes removed from to_be_stripped */ - public static int taxonomyBasedDeletionOfExternalNodes( final Phylogeny reference, final Phylogeny to_be_stripped ) { + public static List taxonomyBasedDeletionOfExternalNodes( final Phylogeny reference, + final Phylogeny to_be_stripped ) { final Set ref_ext_taxo = new HashSet(); - final ArrayList nodes_to_delete = new ArrayList(); for( final PhylogenyNodeIterator it = reference.iteratorExternalForward(); it.hasNext(); ) { - ref_ext_taxo.add( getSpecies( it.next() ) ); + final PhylogenyNode n = it.next(); + if ( !n.getNodeData().isHasTaxonomy() ) { + throw new IllegalArgumentException( "no taxonomic data in node: " + n ); + } + if ( !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getScientificName() ) ) { + ref_ext_taxo.add( n.getNodeData().getTaxonomy().getScientificName() ); + } + if ( !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getTaxonomyCode() ) ) { + ref_ext_taxo.add( n.getNodeData().getTaxonomy().getTaxonomyCode() ); + } + if ( ( n.getNodeData().getTaxonomy().getIdentifier() != null ) + && !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getIdentifier().getValue() ) ) { + ref_ext_taxo.add( n.getNodeData().getTaxonomy().getIdentifier().getValuePlusProvider() ); + } } + final ArrayList nodes_to_delete = new ArrayList(); for( final PhylogenyNodeIterator it = to_be_stripped.iteratorExternalForward(); it.hasNext(); ) { final PhylogenyNode n = it.next(); - if ( !ref_ext_taxo.contains( getSpecies( n ) ) ) { + if ( !n.getNodeData().isHasTaxonomy() ) { + nodes_to_delete.add( n ); + } + else if ( !( ref_ext_taxo.contains( n.getNodeData().getTaxonomy().getScientificName() ) ) + && !( ref_ext_taxo.contains( n.getNodeData().getTaxonomy().getTaxonomyCode() ) ) + && !( ( n.getNodeData().getTaxonomy().getIdentifier() != null ) && ref_ext_taxo + .contains( n.getNodeData().getTaxonomy().getIdentifier().getValuePlusProvider() ) ) ) { nodes_to_delete.add( n ); } } - for( final PhylogenyNode phylogenyNode : nodes_to_delete ) { - to_be_stripped.deleteSubtree( phylogenyNode, true ); + for( final PhylogenyNode n : nodes_to_delete ) { + to_be_stripped.deleteSubtree( n, true ); + } + to_be_stripped.clearHashIdToNodeMap(); + to_be_stripped.externalNodesHaveChanged(); + return nodes_to_delete; + } + + final static public void transferInternalNamesToBootstrapSupport( final Phylogeny phy ) { + final PhylogenyNodeIterator it = phy.iteratorPostorder(); + while ( it.hasNext() ) { + final PhylogenyNode n = it.next(); + if ( !n.isExternal() && !ForesterUtil.isEmpty( n.getName() ) ) { + double value = -1; + try { + value = Double.parseDouble( n.getName() ); + } + catch ( final NumberFormatException e ) { + throw new IllegalArgumentException( "failed to parse number from [" + n.getName() + "]: " + + e.getLocalizedMessage() ); + } + if ( value >= 0.0 ) { + n.getBranchData().addConfidence( new Confidence( value, "bootstrap" ) ); + n.setName( "" ); + } + } + } + } + + final static public boolean isInternalNamesLookLikeConfidences( final Phylogeny phy ) { + final PhylogenyNodeIterator it = phy.iteratorPostorder(); + while ( it.hasNext() ) { + final PhylogenyNode n = it.next(); + if ( !n.isExternal() && !n.isRoot() ) { + if ( !ForesterUtil.isEmpty( n.getName() ) ) { + double value = -1; + try { + value = Double.parseDouble( n.getName() ); + } + catch ( final NumberFormatException e ) { + return false; + } + if ( ( value < 0.0 ) || ( value > 100 ) ) { + return false; + } + } + } + } + return true; + } + + final static public void transferInternalNodeNamesToConfidence( final Phylogeny phy, + final String confidence_type ) { + final PhylogenyNodeIterator it = phy.iteratorPostorder(); + while ( it.hasNext() ) { + transferInternalNodeNameToConfidence( confidence_type, it.next() ); + } + } + + private static void transferInternalNodeNameToConfidence( final String confidence_type, final PhylogenyNode n ) { + if ( !n.isExternal() && !n.getBranchData().isHasConfidences() ) { + if ( !ForesterUtil.isEmpty( n.getName() ) ) { + double d = -1.0; + try { + d = Double.parseDouble( n.getName() ); + } + catch ( final Exception e ) { + d = -1.0; + } + if ( d >= 0.0 ) { + n.getBranchData().addConfidence( new Confidence( d, confidence_type ) ); + n.setName( "" ); + } + } + } + } + + final static public void transferNodeNameToField( final Phylogeny phy, + final PhylogenyNodeField field, + final boolean external_only ) + throws PhyloXmlDataFormatException { + final PhylogenyNodeIterator it = phy.iteratorPostorder(); + while ( it.hasNext() ) { + final PhylogenyNode n = it.next(); + if ( external_only && n.isInternal() ) { + continue; + } + final String name = n.getName().trim(); + if ( !ForesterUtil.isEmpty( name ) ) { + switch ( field ) { + case TAXONOMY_CODE: + n.setName( "" ); + setTaxonomyCode( n, name ); + break; + case TAXONOMY_SCIENTIFIC_NAME: + n.setName( "" ); + if ( !n.getNodeData().isHasTaxonomy() ) { + n.getNodeData().setTaxonomy( new Taxonomy() ); + } + n.getNodeData().getTaxonomy().setScientificName( name ); + break; + case TAXONOMY_COMMON_NAME: + n.setName( "" ); + if ( !n.getNodeData().isHasTaxonomy() ) { + n.getNodeData().setTaxonomy( new Taxonomy() ); + } + n.getNodeData().getTaxonomy().setCommonName( name ); + break; + case SEQUENCE_SYMBOL: + n.setName( "" ); + if ( !n.getNodeData().isHasSequence() ) { + n.getNodeData().setSequence( new Sequence() ); + } + n.getNodeData().getSequence().setSymbol( name ); + break; + case SEQUENCE_NAME: + n.setName( "" ); + if ( !n.getNodeData().isHasSequence() ) { + n.getNodeData().setSequence( new Sequence() ); + } + n.getNodeData().getSequence().setName( name ); + break; + case TAXONOMY_ID_UNIPROT_1: { + if ( !n.getNodeData().isHasTaxonomy() ) { + n.getNodeData().setTaxonomy( new Taxonomy() ); + } + String id = name; + final int i = name.indexOf( '_' ); + if ( i > 0 ) { + id = name.substring( 0, i ); + } + else { + n.setName( "" ); + } + n.getNodeData().getTaxonomy() + .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) ); + break; + } + case TAXONOMY_ID_UNIPROT_2: { + if ( !n.getNodeData().isHasTaxonomy() ) { + n.getNodeData().setTaxonomy( new Taxonomy() ); + } + String id = name; + final int i = name.indexOf( '_' ); + if ( i > 0 ) { + id = name.substring( i + 1, name.length() ); + } + else { + n.setName( "" ); + } + n.getNodeData().getTaxonomy() + .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) ); + break; + } + case TAXONOMY_ID: { + if ( !n.getNodeData().isHasTaxonomy() ) { + n.getNodeData().setTaxonomy( new Taxonomy() ); + } + n.getNodeData().getTaxonomy().setIdentifier( new Identifier( name ) ); + break; + } + default: { + throw new IllegalArgumentException( "don't know what to do with " + field ); + } + } + } + } + } + + static double addPhylogenyDistances( final double a, final double b ) { + if ( ( a >= 0.0 ) && ( b >= 0.0 ) ) { + return a + b; + } + else if ( a >= 0.0 ) { + return a; + } + else if ( b >= 0.0 ) { + return b; + } + return PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT; + } + + static double calculateDistanceToAncestor( final PhylogenyNode anc, PhylogenyNode desc ) { + double d = 0; + boolean all_default = true; + while ( anc != desc ) { + if ( desc.getDistanceToParent() != PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT ) { + d += desc.getDistanceToParent(); + if ( all_default ) { + all_default = false; + } + } + desc = desc.getParent(); + } + if ( all_default ) { + return PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT; + } + return d; + } + + public static double calculateAverageTreeHeight( final PhylogenyNode node ) { + final List ext = node.getAllExternalDescendants(); + double s = 0; + for( PhylogenyNode n : ext ) { + while ( n != node ) { + if ( n.getDistanceToParent() > 0 ) { + s += n.getDistanceToParent(); + } + n = n.getParent(); + } + } + return s / ext.size(); + } + + /** + * Deep copies the phylogeny originating from this node. + */ + static PhylogenyNode copySubTree( final PhylogenyNode source ) { + if ( source == null ) { + return null; + } + else { + final PhylogenyNode newnode = source.copyNodeData(); + if ( !source.isExternal() ) { + for( int i = 0; i < source.getNumberOfDescendants(); ++i ) { + newnode.setChildNode( i, PhylogenyMethods.copySubTree( source.getChildNode( i ) ) ); + } + } + return newnode; + } + } + + /** + * Shallow copies the phylogeny originating from this node. + */ + static PhylogenyNode copySubTreeShallow( final PhylogenyNode source ) { + if ( source == null ) { + return null; + } + else { + final PhylogenyNode newnode = source.copyNodeDataShallow(); + if ( !source.isExternal() ) { + for( int i = 0; i < source.getNumberOfDescendants(); ++i ) { + newnode.setChildNode( i, PhylogenyMethods.copySubTreeShallow( source.getChildNode( i ) ) ); + } + } + return newnode; + } + } + + private final static List divideIntoSubTreesHelper( final PhylogenyNode node, + final double min_distance_to_root ) { + final List l = new ArrayList(); + final PhylogenyNode r = moveTowardsRoot( node, min_distance_to_root ); + for( final PhylogenyNode ext : r.getAllExternalDescendants() ) { + if ( ext.getIndicator() != 0 ) { + throw new RuntimeException( "this should not have happened" ); + } + ext.setIndicator( ( byte ) 1 ); + l.add( ext ); + } + return l; + } + + /** + * Calculates the distance between PhylogenyNodes n1 and n2. + * PRECONDITION: n1 is a descendant of n2. + * + * @param n1 + * a descendant of n2 + * @param n2 + * @return distance between n1 and n2 + */ + private static double getDistance( PhylogenyNode n1, final PhylogenyNode n2 ) { + double d = 0.0; + while ( n1 != n2 ) { + if ( n1.getDistanceToParent() > 0.0 ) { + d += n1.getDistanceToParent(); + } + n1 = n1.getParent(); + } + return d; + } + + private static boolean match( final String s, + final String query, + final boolean case_sensitive, + final boolean partial, + final boolean regex ) { + if ( ForesterUtil.isEmpty( s ) || ForesterUtil.isEmpty( query ) ) { + return false; + } + String my_s = s.trim(); + String my_query = query.trim(); + if ( !case_sensitive && !regex ) { + my_s = my_s.toLowerCase(); + my_query = my_query.toLowerCase(); + } + if ( regex ) { + Pattern p = null; + try { + if ( case_sensitive ) { + p = Pattern.compile( my_query ); + } + else { + p = Pattern.compile( my_query, Pattern.CASE_INSENSITIVE ); + } + } + catch ( final PatternSyntaxException e ) { + return false; + } + if ( p != null ) { + return p.matcher( my_s ).find(); + } + else { + return false; + } + } + else if ( partial ) { + return my_s.indexOf( my_query ) >= 0; + } + else { + Pattern p = null; + try { + p = Pattern.compile( "(\\b|_)" + Pattern.quote( my_query ) + "(\\b|_)" ); + } + catch ( final PatternSyntaxException e ) { + return false; + } + if ( p != null ) { + return p.matcher( my_s ).find(); + } + else { + return false; + } + } + } + + private final static PhylogenyNode moveTowardsRoot( final PhylogenyNode node, final double min_distance_to_root ) { + PhylogenyNode n = node; + PhylogenyNode prev = node; + while ( min_distance_to_root < n.calculateDistanceToRoot() ) { + prev = n; + n = n.getParent(); + } + return prev; + } + + public static enum DESCENDANT_SORT_PRIORITY { + NODE_NAME, + SEQUENCE, + TAXONOMY; + } + + public static enum PhylogenyNodeField { + CLADE_NAME, + SEQUENCE_NAME, + SEQUENCE_SYMBOL, + TAXONOMY_CODE, + TAXONOMY_COMMON_NAME, + TAXONOMY_ID, + TAXONOMY_ID_UNIPROT_1, + TAXONOMY_ID_UNIPROT_2, + TAXONOMY_SCIENTIFIC_NAME; + } + + public static void addMolecularSeqsToTree( final Phylogeny phy, final Msa msa ) { + for( int s = 0; s < msa.getNumberOfSequences(); ++s ) { + final org.forester.sequence.MolecularSequence seq = msa.getSequence( s ); + final PhylogenyNode node = phy.getNode( seq.getIdentifier() ); + final org.forester.phylogeny.data.Sequence new_seq = new Sequence(); + new_seq.setMolecularSequenceAligned( true ); + new_seq.setMolecularSequence( seq.getMolecularSequenceAsString() ); + new_seq.setName( seq.getIdentifier() ); + try { + new_seq.setType( PhyloXmlUtil.SEQ_TYPE_PROTEIN ); + } + catch ( final PhyloXmlDataFormatException ignore ) { + // do nothing + } + node.getNodeData().addSequence( new_seq ); + } + } + + final private static class PhylogenyNodeSortTaxonomyPriority implements Comparator { + + @Override + public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) { + if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) { + return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase() + .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) { + return n1.getNodeData().getTaxonomy().getTaxonomyCode() + .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() ); + } + } + if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) { + return n1.getNodeData().getSequence().getName().toLowerCase() + .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) { + return n1.getNodeData().getSequence().getGeneName() + .compareTo( n2.getNodeData().getSequence().getGeneName() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) { + return n1.getNodeData().getSequence().getSymbol() + .compareTo( n2.getNodeData().getSequence().getSymbol() ); + } + } + if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) { + return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() ); + } + return 0; + } + } + + final private static class PhylogenyNodeSortSequencePriority implements Comparator { + + @Override + public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) { + if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) { + return n1.getNodeData().getSequence().getName().toLowerCase() + .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) { + return n1.getNodeData().getSequence().getGeneName() + .compareTo( n2.getNodeData().getSequence().getGeneName() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) { + return n1.getNodeData().getSequence().getSymbol() + .compareTo( n2.getNodeData().getSequence().getSymbol() ); + } + } + if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) { + return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase() + .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) { + return n1.getNodeData().getTaxonomy().getTaxonomyCode() + .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() ); + } + } + if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) { + return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() ); + } + return 0; + } + } + + final private static class PhylogenyNodeSortNodeNamePriority implements Comparator { + + @Override + public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) { + if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) { + return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() ); + } + if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) { + return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase() + .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) { + return n1.getNodeData().getTaxonomy().getTaxonomyCode() + .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() ); + } + } + if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) { + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) { + return n1.getNodeData().getSequence().getName().toLowerCase() + .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) { + return n1.getNodeData().getSequence().getGeneName() + .compareTo( n2.getNodeData().getSequence().getGeneName() ); + } + if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) ) + && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) { + return n1.getNodeData().getSequence().getSymbol() + .compareTo( n2.getNodeData().getSequence().getSymbol() ); + } + } + return 0; + } + } + + public final static Map calculateDepths( final Phylogeny phy ) { + final Map depths = new HashMap(); + calculateDepthsHelper( phy.getRoot(), 0, depths ); + return depths; + } + + private final static void calculateDepthsHelper( final PhylogenyNode n, int d, final Map depths ) { + depths.put( n.getId(), d ); + ++d; + final List descs = n.getDescendants(); + for( final PhylogenyNode desc : descs ) { + calculateDepthsHelper( desc, d, depths ); + } + } + + public final static void collapseToDepth( final Phylogeny phy, final int depth ) { + if ( phy.getNumberOfExternalNodes() < 3 ) { + return; + } + collapseToDepthHelper( phy.getRoot(), 0, depth ); + } + + private final static void collapseToDepthHelper( final PhylogenyNode n, int d, final int depth ) { + if ( n.isExternal() ) { + n.setCollapse( false ); + return; + } + if ( d >= depth ) { + n.setCollapse( true ); + final PhylogenyNodeIterator it = new PreorderTreeIterator( n ); + while ( it.hasNext() ) { + it.next().setCollapse( true ); + } + } + else { + n.setCollapse( false ); + ++d; + final List descs = n.getDescendants(); + for( final PhylogenyNode desc : descs ) { + collapseToDepthHelper( desc, d, depth ); + } + } + } + + + + public final static void collapseToRank( final Phylogeny phy, final int rank ) { + if ( phy.getNumberOfExternalNodes() < 3 ) { + return; + } + if ( rank < 0 || rank >= TaxonomyUtil.RANKS.length ) { + throw new IllegalArgumentException( "Rank " + rank + " is out of range" ); + } + collapseToRankHelper( phy.getRoot(), rank ); + } + + private final static void collapseToRankHelper( final PhylogenyNode n, final int target_rank ) { + if ( n.isExternal() ) { + n.setCollapse( false ); + return; + } + if ( ( n.getNodeData().getTaxonomy() != null ) + && !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getRank() ) ) { + final String current_rank = n.getNodeData().getTaxonomy().getRank(); + if ( !TaxonomyUtil.RANK_TO_INT.containsKey( current_rank ) ) { + System.out.println( "Don't know rank \"" + current_rank + "\", ignoring." ); + } + else { + if ( TaxonomyUtil.RANK_TO_INT.get( current_rank ) >= target_rank ) { + n.setCollapse( true ); + + final PhylogenyNodeIterator it = new PreorderTreeIterator( n ); + while ( it.hasNext() ) { + it.next().setCollapse( true ); + } + return; + } + } + } + n.setCollapse( false ); + final List descs = n.getDescendants(); + for( final PhylogenyNode desc : descs ) { + collapseToRankHelper( desc, target_rank ); + } + } + + public final static PhylogenyNode getFirstExternalNode( final PhylogenyNode node ) { + PhylogenyNode n = node; + while ( n.isInternal() ) { + n = n.getFirstChildNode(); + } + return n; + } + + public final static PhylogenyNode getLastExternalNode( final PhylogenyNode node ) { + PhylogenyNode n = node; + while ( n.isInternal() ) { + n = n.getLastChildNode(); } - return nodes_to_delete.size(); + return n; } + }