X-Git-Url: http://source.jalview.org/gitweb/?a=blobdiff_plain;f=src%2Fjalview%2Fanalysis%2FAlignmentUtils.java;h=34fe221a98d9099fe4e072f403a7bf12b61d580e;hb=37de9310bec3501cbc6381e0c3dcb282fcaad812;hp=f2262fb7ef67c4c3da201fb95c285ccdcad44662;hpb=c19d2a91ca05e052e3408bf5852d88eb5d0608f1;p=jalview.git diff --git a/src/jalview/analysis/AlignmentUtils.java b/src/jalview/analysis/AlignmentUtils.java index f2262fb..34fe221 100644 --- a/src/jalview/analysis/AlignmentUtils.java +++ b/src/jalview/analysis/AlignmentUtils.java @@ -1,6 +1,6 @@ /* - * Jalview - A Sequence Alignment Editor and Viewer (Version 2.9.0b2) - * Copyright (C) 2015 The Jalview Authors + * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$) + * Copyright (C) $$Year-Rel$$ The Jalview Authors * * This file is part of Jalview. * @@ -20,35 +20,45 @@ */ package jalview.analysis; +import static jalview.io.gff.GffConstants.CLINICAL_SIGNIFICANCE; + import jalview.datamodel.AlignedCodon; import jalview.datamodel.AlignedCodonFrame; +import jalview.datamodel.AlignedCodonFrame.SequenceToSequenceMapping; import jalview.datamodel.Alignment; import jalview.datamodel.AlignmentAnnotation; import jalview.datamodel.AlignmentI; import jalview.datamodel.DBRefEntry; -import jalview.datamodel.DBRefSource; -import jalview.datamodel.FeatureProperties; +import jalview.datamodel.IncompleteCodonException; import jalview.datamodel.Mapping; -import jalview.datamodel.SearchResults; import jalview.datamodel.Sequence; +import jalview.datamodel.SequenceFeature; import jalview.datamodel.SequenceGroup; import jalview.datamodel.SequenceI; +import jalview.io.gff.SequenceOntologyFactory; +import jalview.io.gff.SequenceOntologyI; import jalview.schemes.ResidueProperties; +import jalview.util.Comparison; import jalview.util.DBRefUtils; import jalview.util.MapList; import jalview.util.MappingUtils; +import jalview.util.StringUtils; +import java.io.UnsupportedEncodingException; +import java.net.URLEncoder; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; +import java.util.Collections; +import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashMap; -import java.util.LinkedHashSet; import java.util.List; import java.util.Map; import java.util.Map.Entry; +import java.util.NoSuchElementException; import java.util.Set; import java.util.TreeMap; @@ -62,6 +72,40 @@ import java.util.TreeMap; public class AlignmentUtils { + private static final int CODON_LENGTH = 3; + + private static final String SEQUENCE_VARIANT = "sequence_variant:"; + + private static final String ID = "ID"; + + /** + * A data model to hold the 'normal' base value at a position, and an optional + * sequence variant feature + */ + static final class DnaVariant + { + final String base; + + SequenceFeature variant; + + DnaVariant(String nuc) + { + base = nuc; + variant = null; + } + + DnaVariant(String nuc, SequenceFeature var) + { + base = nuc; + variant = var; + } + + public String getSource() + { + return variant == null ? null : variant.getFeatureGroup(); + } + } + /** * given an existing alignment, create a new alignment including all, or up to * flankSize additional symbols from each sequence's dataset sequence @@ -315,7 +359,7 @@ public class AlignmentUtils } else { - MapList map = mapProteinSequenceToCdna(aaSeq, cdnaSeq); + MapList map = mapCdnaToProtein(aaSeq, cdnaSeq); if (map != null) { acf.addMap(cdnaSeq, aaSeq, map); @@ -338,12 +382,12 @@ public class AlignmentUtils * Answers true if the mappings include one between the given (dataset) * sequences. */ - public static boolean mappingExists(Set set, + public static boolean mappingExists(List mappings, SequenceI aaSeq, SequenceI cdnaSeq) { - if (set != null) + if (mappings != null) { - for (AlignedCodonFrame acf : set) + for (AlignedCodonFrame acf : mappings) { if (cdnaSeq == acf.getDnaForAaSeq(aaSeq)) { @@ -355,16 +399,22 @@ public class AlignmentUtils } /** - * Build a mapping (if possible) of a protein to a cDNA sequence. The cDNA - * must be three times the length of the protein, possibly after ignoring - * start and/or stop codons, and must translate to the protein. Returns null - * if no mapping is determined. + * Builds a mapping (if possible) of a cDNA to a protein sequence. + * + * Returns null if no mapping is determined. * - * @param proteinSeqs + * @param proteinSeq + * the aligned protein sequence * @param cdnaSeq + * the aligned cdna sequence * @return */ - public static MapList mapProteinSequenceToCdna(SequenceI proteinSeq, + public static MapList mapCdnaToProtein(SequenceI proteinSeq, SequenceI cdnaSeq) { /* @@ -386,7 +436,7 @@ public class AlignmentUtils /* * cdnaStart/End, proteinStartEnd are base 1 (for dataset sequence mapping) */ - final int mappedLength = 3 * aaSeqChars.length; + final int mappedLength = CODON_LENGTH * aaSeqChars.length; int cdnaLength = cdnaSeqChars.length; int cdnaStart = cdnaSeq.getStart(); int cdnaEnd = cdnaSeq.getEnd(); @@ -394,18 +444,18 @@ public class AlignmentUtils final int proteinEnd = proteinSeq.getEnd(); /* - * If lengths don't match, try ignoring stop codon. + * If lengths don't match, try ignoring stop codon (if present) */ if (cdnaLength != mappedLength && cdnaLength > 2) { - String lastCodon = String.valueOf(cdnaSeqChars, cdnaLength - 3, 3) - .toUpperCase(); + String lastCodon = String.valueOf(cdnaSeqChars, + cdnaLength - CODON_LENGTH, CODON_LENGTH).toUpperCase(); for (String stop : ResidueProperties.STOP) { if (lastCodon.equals(stop)) { - cdnaEnd -= 3; - cdnaLength -= 3; + cdnaEnd -= CODON_LENGTH; + cdnaLength -= CODON_LENGTH; break; } } @@ -417,25 +467,28 @@ public class AlignmentUtils int startOffset = 0; if (cdnaLength != mappedLength && cdnaLength > 2 - && String.valueOf(cdnaSeqChars, 0, 3).toUpperCase() + && String.valueOf(cdnaSeqChars, 0, CODON_LENGTH).toUpperCase() .equals(ResidueProperties.START)) { - startOffset += 3; - cdnaStart += 3; - cdnaLength -= 3; + startOffset += CODON_LENGTH; + cdnaStart += CODON_LENGTH; + cdnaLength -= CODON_LENGTH; } - if (cdnaLength != mappedLength) - { - return null; - } - if (!translatesAs(cdnaSeqChars, startOffset, aaSeqChars)) + if (translatesAs(cdnaSeqChars, startOffset, aaSeqChars)) { - return null; + /* + * protein is translation of dna (+/- start/stop codons) + */ + MapList map = new MapList(new int[] { cdnaStart, cdnaEnd }, new int[] + { proteinStart, proteinEnd }, CODON_LENGTH, 1); + return map; } - MapList map = new MapList(new int[] { cdnaStart, cdnaEnd }, new int[] { - proteinStart, proteinEnd }, 3, 1); - return map; + + /* + * translation failed - try mapping CDS annotated regions of dna + */ + return mapCdsToProtein(cdnaSeq, proteinSeq); } /** @@ -456,16 +509,17 @@ public class AlignmentUtils return false; } - int aaResidue = 0; - for (int i = cdnaStart; i < cdnaSeqChars.length - 2 - && aaResidue < aaSeqChars.length; i += 3, aaResidue++) + int aaPos = 0; + int dnaPos = cdnaStart; + for (; dnaPos < cdnaSeqChars.length - 2 && aaPos < aaSeqChars.length; dnaPos += CODON_LENGTH, aaPos++) { - String codon = String.valueOf(cdnaSeqChars, i, 3); + String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH); final String translated = ResidueProperties.codonTranslate(codon); + /* * allow * in protein to match untranslatable in dna */ - final char aaRes = aaSeqChars[aaResidue]; + final char aaRes = aaSeqChars[aaPos]; if ((translated == null || "STOP".equals(translated)) && aaRes == '*') { continue; @@ -478,8 +532,32 @@ public class AlignmentUtils return false; } } - // fail if we didn't match all of the aa sequence - return (aaResidue == aaSeqChars.length); + + /* + * check we matched all of the protein sequence + */ + if (aaPos != aaSeqChars.length) + { + return false; + } + + /* + * check we matched all of the dna except + * for optional trailing STOP codon + */ + if (dnaPos == cdnaSeqChars.length) + { + return true; + } + if (dnaPos == cdnaSeqChars.length - CODON_LENGTH) + { + String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH); + if ("STOP".equals(ResidueProperties.codonTranslate(codon))) + { + return true; + } + } + return false; } /** @@ -514,14 +592,14 @@ public class AlignmentUtils /* * Locate the aligned source sequence whose dataset sequence is mapped. We - * just take the first match here (as we can't align cDNA like more than one - * protein sequence). + * just take the first match here (as we can't align like more than one + * sequence). */ SequenceI alignFrom = null; AlignedCodonFrame mapping = null; for (AlignedCodonFrame mp : mappings) { - alignFrom = mp.findAlignedSequence(seq.getDatasetSequence(), al); + alignFrom = mp.findAlignedSequence(seq, al); if (alignFrom != null) { mapping = mp; @@ -541,8 +619,8 @@ public class AlignmentUtils /** * Align sequence 'alignTo' the same way as 'alignFrom', using the mapping to * match residues and codons. Flags control whether existing gaps in unmapped - * (intron) and mapped (exon) regions are preserved or not. Gaps linking intro - * and exon are only retained if both flags are set. + * (intron) and mapped (exon) regions are preserved or not. Gaps between + * intron and exon are only retained if both flags are set. * * @param alignTo * @param alignFrom @@ -558,9 +636,6 @@ public class AlignmentUtils boolean preserveUnmappedGaps) { // TODO generalise to work for Protein-Protein, dna-dna, dna-protein - final char[] thisSeq = alignTo.getSequence(); - final char[] thatAligned = alignFrom.getSequence(); - StringBuilder thisAligned = new StringBuilder(2 * thisSeq.length); // aligned and dataset sequence positions, all base zero int thisSeqPos = 0; @@ -570,13 +645,17 @@ public class AlignmentUtils char myGapChar = myGap.charAt(0); int ratio = myGap.length(); - /* - * Traverse the aligned protein sequence. - */ int fromOffset = alignFrom.getStart() - 1; int toOffset = alignTo.getStart() - 1; int sourceGapMappedLength = 0; boolean inExon = false; + final char[] thisSeq = alignTo.getSequence(); + final char[] thatAligned = alignFrom.getSequence(); + StringBuilder thisAligned = new StringBuilder(2 * thisSeq.length); + + /* + * Traverse the 'model' aligned sequence + */ for (char sourceChar : thatAligned) { if (sourceChar == sourceGap) @@ -586,7 +665,7 @@ public class AlignmentUtils } /* - * Found a residue. Locate its mapped codon (start) position. + * Found a non-gap character. Locate its mapped region if any. */ sourceDsPos++; // Note mapping positions are base 1, our sequence positions base 0 @@ -595,11 +674,13 @@ public class AlignmentUtils if (mappedPos == null) { /* - * Abort realignment if unmapped protein. Or could ignore it?? + * unmapped position; treat like a gap */ - System.err.println("Can't align: no codon mapping to residue " - + sourceDsPos + "(" + sourceChar + ")"); - return; + sourceGapMappedLength += ratio; + // System.err.println("Can't align: no codon mapping to residue " + // + sourceDsPos + "(" + sourceChar + ")"); + // return; + continue; } int mappedCodonStart = mappedPos[0]; // position (1...) of codon start @@ -669,8 +750,8 @@ public class AlignmentUtils } /* - * At end of protein sequence. Copy any remaining dna sequence, optionally - * including (intron) gaps. We do not copy trailing gaps in protein. + * At end of model aligned sequence. Copy any remaining target sequence, optionally + * including (intron) gaps. */ while (thisSeqPos < thisSeq.length) { @@ -679,6 +760,20 @@ public class AlignmentUtils { thisAligned.append(c); } + sourceGapMappedLength--; + } + + /* + * finally add gaps to pad for any trailing source gaps or + * unmapped characters + */ + if (preserveUnmappedGaps) + { + while (sourceGapMappedLength > 0) + { + thisAligned.append(myGapChar); + sourceGapMappedLength--; + } } /* @@ -753,187 +848,341 @@ public class AlignmentUtils } /** - * Returns a list of sequences mapped from the given sequences and aligned - * (gapped) in the same way. For example, the cDNA for aligned protein, where - * a single gap in protein generates three gaps in cDNA. + * Realigns the given protein to match the alignment of the dna, using codon + * mappings to translate aligned codon positions to protein residues. * - * @param sequences - * @param gapCharacter - * @param mappings - * @return + * @param protein + * the alignment whose sequences are realigned by this method + * @param dna + * the dna alignment whose alignment we are 'copying' + * @return the number of sequences that were realigned */ - public static List getAlignedTranslation( - List sequences, char gapCharacter, - Set mappings) + public static int alignProteinAsDna(AlignmentI protein, AlignmentI dna) { - List alignedSeqs = new ArrayList(); - - for (SequenceI seq : sequences) + if (protein.isNucleotide() || !dna.isNucleotide()) { - List mapped = getAlignedTranslation(seq, gapCharacter, - mappings); - alignedSeqs.addAll(mapped); + System.err.println("Wrong alignment type in alignProteinAsDna"); + return 0; } - return alignedSeqs; + List unmappedProtein = new ArrayList(); + Map> alignedCodons = buildCodonColumnsMap( + protein, dna, unmappedProtein); + return alignProteinAs(protein, alignedCodons, unmappedProtein); } /** - * Returns sequences aligned 'like' the source sequence, as mapped by the - * given mappings. Normally we expect zero or one 'mapped' sequences, but this - * will support 1-to-many as well. + * Realigns the given dna to match the alignment of the protein, using codon + * mappings to translate aligned peptide positions to codons. * - * @param seq - * @param gapCharacter - * @param mappings - * @return + * Always produces a padded CDS alignment. + * + * @param dna + * the alignment whose sequences are realigned by this method + * @param protein + * the protein alignment whose alignment we are 'copying' + * @return the number of sequences that were realigned */ - protected static List getAlignedTranslation(SequenceI seq, - char gapCharacter, Set mappings) + public static int alignCdsAsProtein(AlignmentI dna, AlignmentI protein) { - List result = new ArrayList(); - for (AlignedCodonFrame mapping : mappings) + if (protein.isNucleotide() || !dna.isNucleotide()) { - if (mapping.involvesSequence(seq)) + System.err.println("Wrong alignment type in alignProteinAsDna"); + return 0; + } + // todo: implement this + List mappings = protein.getCodonFrames(); + int alignedCount = 0; + int width = 0; // alignment width for padding CDS + for (SequenceI dnaSeq : dna.getSequences()) + { + if (alignCdsSequenceAsProtein(dnaSeq, protein, mappings, + dna.getGapCharacter())) { - SequenceI mapped = getAlignedTranslation(seq, gapCharacter, mapping); - if (mapped != null) - { - result.add(mapped); - } + alignedCount++; } + width = Math.max(dnaSeq.getLength(), width); } - return result; + int oldwidth; + int diff; + for (SequenceI dnaSeq : dna.getSequences()) + { + oldwidth = dnaSeq.getLength(); + diff = width - oldwidth; + if (diff > 0) + { + dnaSeq.insertCharAt(oldwidth, diff, dna.getGapCharacter()); + } + } + return alignedCount; } /** - * Returns the translation of 'seq' (as held in the mapping) with - * corresponding alignment (gaps). + * Helper method to align (if possible) the dna sequence to match the + * alignment of a mapped protein sequence. This is currently limited to + * handling coding sequence only. * - * @param seq - * @param gapCharacter - * @param mapping + * @param cdsSeq + * @param protein + * @param mappings + * @param gapChar * @return */ - protected static SequenceI getAlignedTranslation(SequenceI seq, - char gapCharacter, AlignedCodonFrame mapping) + static boolean alignCdsSequenceAsProtein(SequenceI cdsSeq, + AlignmentI protein, List mappings, char gapChar) { - String gap = String.valueOf(gapCharacter); - boolean toDna = false; - int fromRatio = 1; - SequenceI mapTo = mapping.getDnaForAaSeq(seq); - if (mapTo != null) - { - // mapping is from protein to nucleotide - toDna = true; - // should ideally get gap count ratio from mapping - gap = String.valueOf(new char[] { gapCharacter, gapCharacter, - gapCharacter }); - } - else + SequenceI cdsDss = cdsSeq.getDatasetSequence(); + if (cdsDss == null) { - // mapping is from nucleotide to protein - mapTo = mapping.getAaForDnaSeq(seq); - fromRatio = 3; + System.err + .println("alignCdsSequenceAsProtein needs aligned sequence!"); + return false; } - StringBuilder newseq = new StringBuilder(seq.getLength() - * (toDna ? 3 : 1)); - - int residueNo = 0; // in seq, base 1 - int[] phrase = new int[fromRatio]; - int phraseOffset = 0; - int gapWidth = 0; - boolean first = true; - final Sequence alignedSeq = new Sequence("", ""); - for (char c : seq.getSequence()) + List dnaMappings = MappingUtils + .findMappingsForSequence(cdsSeq, mappings); + for (AlignedCodonFrame mapping : dnaMappings) { - if (c == gapCharacter) + SequenceI peptide = mapping.findAlignedSequence(cdsSeq, protein); + if (peptide != null) { - gapWidth++; - if (gapWidth >= fromRatio) - { - newseq.append(gap); - gapWidth = 0; - } - } - else - { - phrase[phraseOffset++] = residueNo + 1; - if (phraseOffset == fromRatio) + int peptideLength = peptide.getLength(); + Mapping map = mapping.getMappingBetween(cdsSeq, peptide); + if (map != null) { + MapList mapList = map.getMap(); + if (map.getTo() == peptide.getDatasetSequence()) + { + mapList = mapList.getInverse(); + } + int cdsLength = cdsDss.getLength(); + int mappedFromLength = MappingUtils.getLength(mapList + .getFromRanges()); + int mappedToLength = MappingUtils + .getLength(mapList.getToRanges()); + boolean addStopCodon = (cdsLength == mappedFromLength + * CODON_LENGTH + CODON_LENGTH) + || (peptide.getDatasetSequence().getLength() == mappedFromLength - 1); + if (cdsLength != mappedToLength && !addStopCodon) + { + System.err + .println(String + .format("Can't align cds as protein (length mismatch %d/%d): %s", + cdsLength, mappedToLength, + cdsSeq.getName())); + } + + /* + * pre-fill the aligned cds sequence with gaps + */ + char[] alignedCds = new char[peptideLength * CODON_LENGTH + + (addStopCodon ? CODON_LENGTH : 0)]; + Arrays.fill(alignedCds, gapChar); + /* - * Have read a whole codon (or protein residue), now translate: map - * source phrase to positions in target sequence add characters at - * these positions to newseq Note mapping positions are base 1, our - * sequence positions base 0. + * walk over the aligned peptide sequence and insert mapped + * codons for residues in the aligned cds sequence */ - SearchResults sr = new SearchResults(); - for (int pos : phrase) + char[] alignedPeptide = peptide.getSequence(); + char[] nucleotides = cdsDss.getSequence(); + int copiedBases = 0; + int cdsStart = cdsDss.getStart(); + int proteinPos = peptide.getStart() - 1; + int cdsCol = 0; + for (char residue : alignedPeptide) { - mapping.markMappedRegion(seq, pos, sr); + if (Comparison.isGap(residue)) + { + cdsCol += CODON_LENGTH; + } + else + { + proteinPos++; + int[] codon = mapList.locateInTo(proteinPos, proteinPos); + if (codon == null) + { + // e.g. incomplete start codon, X in peptide + cdsCol += CODON_LENGTH; + } + else + { + for (int j = codon[0]; j <= codon[1]; j++) + { + char mappedBase = nucleotides[j - cdsStart]; + alignedCds[cdsCol++] = mappedBase; + copiedBases++; + } + } + } } - newseq.append(sr.getCharacters()); - if (first) + + /* + * append stop codon if not mapped from protein, + * closing it up to the end of the mapped sequence + */ + if (copiedBases == nucleotides.length - CODON_LENGTH) { - first = false; - // Hack: Copy sequence dataset, name and description from - // SearchResults.match[0].sequence - // TODO? carry over sequence names from original 'complement' - // alignment - SequenceI mappedTo = sr.getResultSequence(0); - alignedSeq.setName(mappedTo.getName()); - alignedSeq.setDescription(mappedTo.getDescription()); - alignedSeq.setDatasetSequence(mappedTo); + for (int i = alignedCds.length - 1; i >= 0; i--) + { + if (!Comparison.isGap(alignedCds[i])) + { + cdsCol = i + 1; // gap just after end of sequence + break; + } + } + for (int i = nucleotides.length - CODON_LENGTH; i < nucleotides.length; i++) + { + alignedCds[cdsCol++] = nucleotides[i]; + } } - phraseOffset = 0; + cdsSeq.setSequence(new String(alignedCds)); + return true; } - residueNo++; } } - alignedSeq.setSequence(newseq.toString()); - return alignedSeq; + return false; } /** - * Realigns the given protein to match the alignment of the dna, using codon - * mappings to translate aligned codon positions to protein residues. + * Builds a map whose key is an aligned codon position (3 alignment column + * numbers base 0), and whose value is a map from protein sequence to each + * protein's peptide residue for that codon. The map generates an ordering of + * the codons, and allows us to read off the peptides at each position in + * order to assemble 'aligned' protein sequences. * * @param protein - * the alignment whose sequences are realigned by this method + * the protein alignment * @param dna - * the dna alignment whose alignment we are 'copying' - * @return the number of sequences that were realigned + * the coding dna alignment + * @param unmappedProtein + * any unmapped proteins are added to this list + * @return */ - public static int alignProteinAsDna(AlignmentI protein, AlignmentI dna) + protected static Map> buildCodonColumnsMap( + AlignmentI protein, AlignmentI dna, + List unmappedProtein) { - List unmappedProtein = new ArrayList(); + /* + * maintain a list of any proteins with no mappings - these will be + * rendered 'as is' in the protein alignment as we can't align them + */ unmappedProtein.addAll(protein.getSequences()); - Set mappings = protein.getCodonFrames(); + List mappings = protein.getCodonFrames(); /* * Map will hold, for each aligned codon position e.g. [3, 5, 6], a map of * {dnaSequence, {proteinSequence, codonProduct}} at that position. The * comparator keeps the codon positions ordered. */ - Map> alignedCodons = new TreeMap>( + Map> alignedCodons = new TreeMap>( new CodonComparator()); + for (SequenceI dnaSeq : dna.getSequences()) { for (AlignedCodonFrame mapping : mappings) { - Mapping seqMap = mapping.getMappingForSequence(dnaSeq); - SequenceI prot = mapping.findAlignedSequence( - dnaSeq.getDatasetSequence(), protein); + SequenceI prot = mapping.findAlignedSequence(dnaSeq, protein); if (prot != null) { + Mapping seqMap = mapping.getMappingForSequence(dnaSeq); addCodonPositions(dnaSeq, prot, protein.getGapCharacter(), seqMap, alignedCodons); unmappedProtein.remove(prot); } } } - return alignProteinAs(protein, alignedCodons, unmappedProtein); + + /* + * Finally add any unmapped peptide start residues (e.g. for incomplete + * codons) as if at the codon position before the second residue + */ + // TODO resolve JAL-2022 so this fudge can be removed + int mappedSequenceCount = protein.getHeight() - unmappedProtein.size(); + addUnmappedPeptideStarts(alignedCodons, mappedSequenceCount); + + return alignedCodons; + } + + /** + * Scans for any protein mapped from position 2 (meaning unmapped start + * position e.g. an incomplete codon), and synthesizes a 'codon' for it at the + * preceding position in the alignment + * + * @param alignedCodons + * the codon-to-peptide map + * @param mappedSequenceCount + * the number of distinct sequences in the map + */ + protected static void addUnmappedPeptideStarts( + Map> alignedCodons, + int mappedSequenceCount) + { + // TODO delete this ugly hack once JAL-2022 is resolved + // i.e. we can model startPhase > 0 (incomplete start codon) + + List sequencesChecked = new ArrayList(); + AlignedCodon lastCodon = null; + Map toAdd = new HashMap(); + + for (Entry> entry : alignedCodons + .entrySet()) + { + for (Entry sequenceCodon : entry.getValue() + .entrySet()) + { + SequenceI seq = sequenceCodon.getKey(); + if (sequencesChecked.contains(seq)) + { + continue; + } + sequencesChecked.add(seq); + AlignedCodon codon = sequenceCodon.getValue(); + if (codon.peptideCol > 1) + { + System.err + .println("Problem mapping protein with >1 unmapped start positions: " + + seq.getName()); + } + else if (codon.peptideCol == 1) + { + /* + * first position (peptideCol == 0) was unmapped - add it + */ + if (lastCodon != null) + { + AlignedCodon firstPeptide = new AlignedCodon(lastCodon.pos1, + lastCodon.pos2, lastCodon.pos3, String.valueOf(seq + .getCharAt(0)), 0); + toAdd.put(seq, firstPeptide); + } + else + { + /* + * unmapped residue at start of alignment (no prior column) - + * 'insert' at nominal codon [0, 0, 0] + */ + AlignedCodon firstPeptide = new AlignedCodon(0, 0, 0, + String.valueOf(seq.getCharAt(0)), 0); + toAdd.put(seq, firstPeptide); + } + } + if (sequencesChecked.size() == mappedSequenceCount) + { + // no need to check past first mapped position in all sequences + break; + } + } + lastCodon = entry.getKey(); + } + + /* + * add any new codons safely after iterating over the map + */ + for (Entry startCodon : toAdd.entrySet()) + { + addCodonToMap(alignedCodons, startCodon.getValue(), + startCodon.getKey()); + } } /** @@ -948,7 +1197,7 @@ public class AlignmentUtils * @return */ protected static int alignProteinAs(AlignmentI protein, - Map> alignedCodons, + Map> alignedCodons, List unmappedProtein) { /* @@ -970,12 +1219,13 @@ public class AlignmentUtils int column = 0; for (AlignedCodon codon : alignedCodons.keySet()) { - final Map columnResidues = alignedCodons + final Map columnResidues = alignedCodons .get(codon); - for (Entry entry : columnResidues.entrySet()) + for (Entry entry : columnResidues.entrySet()) { // place translated codon at its column position in sequence - entry.getKey().getSequence()[column] = entry.getValue().charAt(0); + entry.getKey().getSequence()[column] = entry.getValue().product + .charAt(0); } column++; } @@ -1000,23 +1250,51 @@ public class AlignmentUtils */ static void addCodonPositions(SequenceI dna, SequenceI protein, char gapChar, Mapping seqMap, - Map> alignedCodons) + Map> alignedCodons) { Iterator codons = seqMap.getCodonIterator(dna, gapChar); + + /* + * add codon positions, and their peptide translations, to the alignment + * map, while remembering the first codon mapped + */ while (codons.hasNext()) { - AlignedCodon codon = codons.next(); - Map seqProduct = alignedCodons.get(codon); - if (seqProduct == null) + try { - seqProduct = new HashMap(); - alignedCodons.put(codon, seqProduct); + AlignedCodon codon = codons.next(); + addCodonToMap(alignedCodons, codon, protein); + } catch (IncompleteCodonException e) + { + // possible incomplete trailing codon - ignore + } catch (NoSuchElementException e) + { + // possibly peptide lacking STOP } - seqProduct.put(protein, codon.product); } } /** + * Helper method to add a codon-to-peptide entry to the aligned codons map + * + * @param alignedCodons + * @param codon + * @param protein + */ + protected static void addCodonToMap( + Map> alignedCodons, + AlignedCodon codon, SequenceI protein) + { + Map seqProduct = alignedCodons.get(codon); + if (seqProduct == null) + { + seqProduct = new HashMap(); + alignedCodons.put(codon, seqProduct); + } + seqProduct.put(protein, codon); + } + + /** * Returns true if a cDNA/Protein mapping either exists, or could be made, * between at least one pair of sequences in the two alignments. Currently, * the logic is: @@ -1048,7 +1326,7 @@ public class AlignmentUtils } AlignmentI dna = al1.isNucleotide() ? al1 : al2; AlignmentI protein = dna == al1 ? al2 : al1; - Set mappings = protein.getCodonFrames(); + List mappings = protein.getCodonFrames(); for (SequenceI dnaSeq : dna.getSequences()) { for (SequenceI proteinSeq : protein.getSequences()) @@ -1072,7 +1350,7 @@ public class AlignmentUtils * @return */ protected static boolean isMappable(SequenceI dnaSeq, - SequenceI proteinSeq, Set mappings) + SequenceI proteinSeq, List mappings) { if (dnaSeq == null || proteinSeq == null) { @@ -1084,13 +1362,13 @@ public class AlignmentUtils SequenceI proteinDs = proteinSeq.getDatasetSequence() == null ? proteinSeq : proteinSeq.getDatasetSequence(); - /* - * Already mapped? - */ for (AlignedCodonFrame mapping : mappings) { if (proteinDs == mapping.getAaForDnaSeq(dnaDs)) { + /* + * already mapped + */ return true; } } @@ -1099,7 +1377,7 @@ public class AlignmentUtils * Just try to make a mapping (it is not yet stored), test whether * successful. */ - return mapProteinSequenceToCdna(proteinDs, dnaDs) != null; + return mapCdnaToProtein(proteinDs, dnaDs) != null; } /** @@ -1241,15 +1519,19 @@ public class AlignmentUtils Collection types, List forSequences, boolean anyType, boolean doShow) { - for (AlignmentAnnotation aa : al.getAlignmentAnnotation()) + AlignmentAnnotation[] anns = al.getAlignmentAnnotation(); + if (anns != null) { - if (anyType || types.contains(aa.label)) + for (AlignmentAnnotation aa : anns) { - if ((aa.sequenceRef != null) - && (forSequences == null || forSequences - .contains(aa.sequenceRef))) + if (anyType || types.contains(aa.label)) { - aa.visible = doShow; + if ((aa.sequenceRef != null) + && (forSequences == null || forSequences + .contains(aa.sequenceRef))) + { + aa.visible = doShow; + } } } } @@ -1284,7 +1566,7 @@ public class AlignmentUtils return false; } String name = seq2.getName(); - final DBRefEntry[] xrefs = seq1.getDBRef(); + final DBRefEntry[] xrefs = seq1.getDBRefs(); if (xrefs != null) { for (DBRefEntry xref : xrefs) @@ -1301,133 +1583,1402 @@ public class AlignmentUtils } /** - * Constructs an alignment consisting of the mapped exon regions in the given - * nucleotide sequences, and updates mappings to match. + * Constructs an alignment consisting of the mapped (CDS) regions in the given + * nucleotide sequences, and updates mappings to match. The CDS sequences are + * added to the original alignment's dataset, which is shared by the new + * alignment. Mappings from nucleotide to CDS, and from CDS to protein, are + * added to the alignment dataset. * * @param dna - * aligned dna sequences - * @param mappings - * from dna to protein; these are replaced with new mappings - * @return an alignment whose sequences are the exon-only parts of the dna - * sequences (or null if no exons are found) + * aligned nucleotide (dna or cds) sequences + * @param dataset + * the alignment dataset the sequences belong to + * @param products + * (optional) to restrict results to CDS that map to specified + * protein products + * @return an alignment whose sequences are the cds-only parts of the dna + * sequences (or null if no mappings are found) */ - public static AlignmentI makeExonAlignment(SequenceI[] dna, - Set mappings) + public static AlignmentI makeCdsAlignment(SequenceI[] dna, + AlignmentI dataset, SequenceI[] products) { - Set newMappings = new LinkedHashSet(); - List exonSequences = new ArrayList(); - - for (SequenceI dnaSeq : dna) + if (dataset == null || dataset.getDataset() != null) { - final SequenceI ds = dnaSeq.getDatasetSequence(); - List seqMappings = MappingUtils - .findMappingsForSequence(ds, mappings); - for (AlignedCodonFrame acf : seqMappings) + throw new IllegalArgumentException( + "IMPLEMENTATION ERROR: dataset.getDataset() must be null!"); + } + List foundSeqs = new ArrayList(); + List cdsSeqs = new ArrayList(); + List mappings = dataset.getCodonFrames(); + HashSet productSeqs = null; + if (products != null) + { + productSeqs = new HashSet(); + for (SequenceI seq : products) { - AlignedCodonFrame newMapping = new AlignedCodonFrame(); - final List mappedExons = makeExonSequences(ds, acf, - newMapping); - if (!mappedExons.isEmpty()) - { - exonSequences.addAll(mappedExons); - newMappings.add(newMapping); - } + productSeqs.add(seq.getDatasetSequence() == null ? seq : seq + .getDatasetSequence()); } } - AlignmentI al = new Alignment( - exonSequences.toArray(new SequenceI[exonSequences.size()])); - al.setDataset(null); /* - * Replace the old mappings with the new ones + * Construct CDS sequences from mappings on the alignment dataset. + * The logic is: + * - find the protein product(s) mapped to from each dna sequence + * - if the mapping covers the whole dna sequence (give or take start/stop + * codon), take the dna as the CDS sequence + * - else search dataset mappings for a suitable dna sequence, i.e. one + * whose whole sequence is mapped to the protein + * - if no sequence found, construct one from the dna sequence and mapping + * (and add it to dataset so it is found if this is repeated) */ - mappings.clear(); - mappings.addAll(newMappings); - - return al; - } - - /** - * Helper method to make exon-only sequences and populate their mappings to - * protein products - *

- * For example, if ggCCaTTcGAg has mappings [3, 4, 6, 7, 9, 10] to protein - * then generate a sequence CCTTGA with mapping [1, 6] to the same protein - * residues - *

- * Typically eukaryotic dna will include exons encoding for a single peptide - * sequence i.e. return a single result. Bacterial dna may have overlapping - * exon mappings coding for multiple peptides so return multiple results - * (example EMBL KF591215). - * - * @param dnaSeq - * a dna dataset sequence - * @param mapping - * containing one or more mappings of the sequence to protein - * @param newMapping - * the new mapping to populate, from the exon-only sequences to their - * mapped protein sequences - * @return - */ - protected static List makeExonSequences(SequenceI dnaSeq, - AlignedCodonFrame mapping, AlignedCodonFrame newMapping) - { - List exonSequences = new ArrayList(); - List seqMappings = mapping.getMappingsForSequence(dnaSeq); - final char[] dna = dnaSeq.getSequence(); - for (Mapping seqMapping : seqMappings) + for (SequenceI dnaSeq : dna) { - StringBuilder newSequence = new StringBuilder(dnaSeq.getLength()); + SequenceI dnaDss = dnaSeq.getDatasetSequence() == null ? dnaSeq + : dnaSeq.getDatasetSequence(); - /* - * Get the codon regions as { [2, 5], [7, 12], [14, 14] etc } - */ - final List dnaExonRanges = seqMapping.getMap().getFromRanges(); - for (int[] range : dnaExonRanges) + List seqMappings = MappingUtils + .findMappingsForSequence(dnaSeq, mappings); + for (AlignedCodonFrame mapping : seqMappings) { - for (int pos = range[0]; pos <= range[1]; pos++) - { - newSequence.append(dna[pos - 1]); - } - } - - SequenceI exon = new Sequence(dnaSeq.getName(), - newSequence.toString()); + List mappingsFromSequence = mapping + .getMappingsFromSequence(dnaSeq); - /* - * Locate any xrefs to CDS database on the protein product and attach to - * the CDS sequence. Also add as a sub-token of the sequence name. - */ - // default to "CDS" if we can't locate an actual gene id - String cdsAccId = FeatureProperties - .getCodingFeature(DBRefSource.EMBL); - DBRefEntry[] cdsRefs = DBRefUtils.selectRefs(seqMapping.getTo() - .getDBRef(), DBRefSource.CODINGDBS); - if (cdsRefs != null) - { - for (DBRefEntry cdsRef : cdsRefs) + for (Mapping aMapping : mappingsFromSequence) { - exon.addDBRef(new DBRefEntry(cdsRef)); - cdsAccId = cdsRef.getAccessionId(); - } - } - exon.setName(exon.getName() + "|" + cdsAccId); - exon.createDatasetSequence(); + MapList mapList = aMapping.getMap(); + if (mapList.getFromRatio() == 1) + { + /* + * not a dna-to-protein mapping (likely dna-to-cds) + */ + continue; + } - /* - * Build new mappings - from the same protein regions, but now to - * contiguous exons - */ - List exonRange = new ArrayList(); - exonRange.add(new int[] { 1, newSequence.length() }); - MapList map = new MapList(exonRange, seqMapping.getMap() - .getToRanges(), 3, 1); - newMapping.addMap(exon.getDatasetSequence(), seqMapping.getTo(), map); - MapList cdsToDnaMap = new MapList(dnaExonRanges, exonRange, 1, 1); - newMapping.addMap(dnaSeq, exon.getDatasetSequence(), cdsToDnaMap); + /* + * skip if mapping is not to one of the target set of proteins + */ + SequenceI proteinProduct = aMapping.getTo(); + if (productSeqs != null && !productSeqs.contains(proteinProduct)) + { + continue; + } - exonSequences.add(exon); - } - return exonSequences; + /* + * try to locate the CDS from the dataset mappings; + * guard against duplicate results (for the case that protein has + * dbrefs to both dna and cds sequences) + */ + SequenceI cdsSeq = findCdsForProtein(mappings, dnaSeq, + seqMappings, aMapping); + if (cdsSeq != null) + { + if (!foundSeqs.contains(cdsSeq)) + { + foundSeqs.add(cdsSeq); + SequenceI derivedSequence = cdsSeq.deriveSequence(); + cdsSeqs.add(derivedSequence); + if (!dataset.getSequences().contains(cdsSeq)) + { + dataset.addSequence(cdsSeq); + } + } + continue; + } + + /* + * didn't find mapped CDS sequence - construct it and add + * its dataset sequence to the dataset + */ + cdsSeq = makeCdsSequence(dnaSeq.getDatasetSequence(), aMapping, + dataset).deriveSequence(); + // cdsSeq has a name constructed as CDS| + // will be either the accession for the coding sequence, + // marked in the /via/ dbref to the protein product accession + // or it will be the original nucleotide accession. + SequenceI cdsSeqDss = cdsSeq.getDatasetSequence(); + + cdsSeqs.add(cdsSeq); + + if (!dataset.getSequences().contains(cdsSeqDss)) + { + // check if this sequence is a newly created one + // so needs adding to the dataset + dataset.addSequence(cdsSeqDss); + } + + /* + * add a mapping from CDS to the (unchanged) mapped to range + */ + List cdsRange = Collections.singletonList(new int[] { 1, + cdsSeq.getLength() }); + MapList cdsToProteinMap = new MapList(cdsRange, + mapList.getToRanges(), mapList.getFromRatio(), + mapList.getToRatio()); + AlignedCodonFrame cdsToProteinMapping = new AlignedCodonFrame(); + cdsToProteinMapping.addMap(cdsSeqDss, proteinProduct, + cdsToProteinMap); + + /* + * guard against duplicating the mapping if repeating this action + */ + if (!mappings.contains(cdsToProteinMapping)) + { + mappings.add(cdsToProteinMapping); + } + + propagateDBRefsToCDS(cdsSeqDss, dnaSeq.getDatasetSequence(), + proteinProduct, aMapping); + /* + * add another mapping from original 'from' range to CDS + */ + AlignedCodonFrame dnaToCdsMapping = new AlignedCodonFrame(); + MapList dnaToCdsMap = new MapList(mapList.getFromRanges(), + cdsRange, 1, 1); + dnaToCdsMapping.addMap(dnaSeq.getDatasetSequence(), cdsSeqDss, + dnaToCdsMap); + if (!mappings.contains(dnaToCdsMapping)) + { + mappings.add(dnaToCdsMapping); + } + + /* + * add DBRef with mapping from protein to CDS + * (this enables Get Cross-References from protein alignment) + * This is tricky because we can't have two DBRefs with the + * same source and accession, so need a different accession for + * the CDS from the dna sequence + */ + + // specific use case: + // Genomic contig ENSCHR:1, contains coding regions for ENSG01, + // ENSG02, ENSG03, with transcripts and products similarly named. + // cannot add distinct dbrefs mapping location on ENSCHR:1 to ENSG01 + + // JBPNote: ?? can't actually create an example that demonstrates we + // need to + // synthesize an xref. + + for (DBRefEntry primRef : dnaDss.getPrimaryDBRefs()) + { + // creates a complementary cross-reference to the source sequence's + // primary reference. + + DBRefEntry cdsCrossRef = new DBRefEntry(primRef.getSource(), + primRef.getSource() + ":" + primRef.getVersion(), + primRef.getAccessionId()); + cdsCrossRef + .setMap(new Mapping(dnaDss, new MapList(dnaToCdsMap))); + cdsSeqDss.addDBRef(cdsCrossRef); + + // problem here is that the cross-reference is synthesized - + // cdsSeq.getName() may be like 'CDS|dnaaccession' or + // 'CDS|emblcdsacc' + // assuming cds version same as dna ?!? + + DBRefEntry proteinToCdsRef = new DBRefEntry( + primRef.getSource(), primRef.getVersion(), + cdsSeq.getName()); + // + proteinToCdsRef.setMap(new Mapping(cdsSeqDss, cdsToProteinMap + .getInverse())); + proteinProduct.addDBRef(proteinToCdsRef); + } + + /* + * transfer any features on dna that overlap the CDS + */ + transferFeatures(dnaSeq, cdsSeq, dnaToCdsMap, null, + SequenceOntologyI.CDS); + } + } + } + + AlignmentI cds = new Alignment(cdsSeqs.toArray(new SequenceI[cdsSeqs + .size()])); + cds.setDataset(dataset); + + return cds; + } + + /** + * A helper method that finds a CDS sequence in the alignment dataset that is + * mapped to the given protein sequence, and either is, or has a mapping from, + * the given dna sequence. + * + * @param mappings + * set of all mappings on the dataset + * @param dnaSeq + * a dna (or cds) sequence we are searching from + * @param seqMappings + * the set of mappings involving dnaSeq + * @param aMapping + * an initial candidate from seqMappings + * @return + */ + static SequenceI findCdsForProtein(List mappings, + SequenceI dnaSeq, List seqMappings, + Mapping aMapping) + { + /* + * TODO a better dna-cds-protein mapping data representation to allow easy + * navigation; until then this clunky looping around lists of mappings + */ + SequenceI seqDss = dnaSeq.getDatasetSequence() == null ? dnaSeq + : dnaSeq.getDatasetSequence(); + SequenceI proteinProduct = aMapping.getTo(); + + /* + * is this mapping from the whole dna sequence (i.e. CDS)? + * allowing for possible stop codon on dna but not peptide + */ + int mappedFromLength = MappingUtils.getLength(aMapping.getMap() + .getFromRanges()); + int dnaLength = seqDss.getLength(); + if (mappedFromLength == dnaLength + || mappedFromLength == dnaLength - CODON_LENGTH) + { + return seqDss; + } + + /* + * looks like we found the dna-to-protein mapping; search for the + * corresponding cds-to-protein mapping + */ + List mappingsToPeptide = MappingUtils + .findMappingsForSequence(proteinProduct, mappings); + for (AlignedCodonFrame acf : mappingsToPeptide) + { + for (SequenceToSequenceMapping map : acf.getMappings()) + { + Mapping mapping = map.getMapping(); + if (mapping != aMapping + && mapping.getMap().getFromRatio() == CODON_LENGTH + && proteinProduct == mapping.getTo() + && seqDss != map.getFromSeq()) + { + mappedFromLength = MappingUtils.getLength(mapping.getMap() + .getFromRanges()); + if (mappedFromLength == map.getFromSeq().getLength()) + { + /* + * found a 3:1 mapping to the protein product which covers + * the whole dna sequence i.e. is from CDS; finally check it + * is from the dna start sequence + */ + SequenceI cdsSeq = map.getFromSeq(); + List dnaToCdsMaps = MappingUtils + .findMappingsForSequence(cdsSeq, seqMappings); + if (!dnaToCdsMaps.isEmpty()) + { + return cdsSeq; + } + } + } + } + } + return null; + } + + /** + * Helper method that makes a CDS sequence as defined by the mappings from the + * given sequence i.e. extracts the 'mapped from' ranges (which may be on + * forward or reverse strand). + * + * @param seq + * @param mapping + * @param dataset + * - existing dataset. We check for sequences that look like the CDS + * we are about to construct, if one exists already, then we will + * just return that one. + * @return CDS sequence (as a dataset sequence) + */ + static SequenceI makeCdsSequence(SequenceI seq, Mapping mapping, + AlignmentI dataset) + { + char[] seqChars = seq.getSequence(); + List fromRanges = mapping.getMap().getFromRanges(); + int cdsWidth = MappingUtils.getLength(fromRanges); + char[] newSeqChars = new char[cdsWidth]; + + int newPos = 0; + for (int[] range : fromRanges) + { + if (range[0] <= range[1]) + { + // forward strand mapping - just copy the range + int length = range[1] - range[0] + 1; + System.arraycopy(seqChars, range[0] - 1, newSeqChars, newPos, + length); + newPos += length; + } + else + { + // reverse strand mapping - copy and complement one by one + for (int i = range[0]; i >= range[1]; i--) + { + newSeqChars[newPos++] = Dna.getComplement(seqChars[i - 1]); + } + } + } + + /* + * assign 'from id' held in the mapping if set (e.g. EMBL protein_id), + * else generate a sequence name + */ + String mapFromId = mapping.getMappedFromId(); + String seqId = "CDS|" + (mapFromId != null ? mapFromId : seq.getName()); + SequenceI newSeq = new Sequence(seqId, newSeqChars, 1, newPos); + if (dataset != null) + { + SequenceI[] matches = dataset.findSequenceMatch(newSeq.getName()); + if (matches != null) + { + boolean matched = false; + for (SequenceI mtch : matches) + { + if (mtch.getStart() != newSeq.getStart()) + { + continue; + } + if (mtch.getEnd() != newSeq.getEnd()) + { + continue; + } + if (!Arrays.equals(mtch.getSequence(), newSeq.getSequence())) + { + continue; + } + if (!matched) + { + matched = true; + newSeq = mtch; + } + else + { + System.err + .println("JAL-2154 regression: warning - found (and ignnored a duplicate CDS sequence):" + + mtch.toString()); + } + } + } + } + // newSeq.setDescription(mapFromId); + + return newSeq; + } + + /** + * add any DBRefEntrys to cdsSeq from contig that have a Mapping congruent to + * the given mapping. + * + * @param cdsSeq + * @param contig + * @param mapping + * @return list of DBRefEntrys added. + */ + public static List propagateDBRefsToCDS(SequenceI cdsSeq, + SequenceI contig, SequenceI proteinProduct, Mapping mapping) + { + + // gather direct refs from contig congrent with mapping + List direct = new ArrayList(); + HashSet directSources = new HashSet(); + if (contig.getDBRefs() != null) + { + for (DBRefEntry dbr : contig.getDBRefs()) + { + if (dbr.hasMap() && dbr.getMap().getMap().isTripletMap()) + { + MapList map = dbr.getMap().getMap(); + // check if map is the CDS mapping + if (mapping.getMap().equals(map)) + { + direct.add(dbr); + directSources.add(dbr.getSource()); + } + } + } + } + DBRefEntry[] onSource = DBRefUtils.selectRefs( + proteinProduct.getDBRefs(), + directSources.toArray(new String[0])); + List propagated = new ArrayList(); + + // and generate appropriate mappings + for (DBRefEntry cdsref : direct) + { + // clone maplist and mapping + MapList cdsposmap = new MapList(Arrays.asList(new int[][] { new int[] + { cdsSeq.getStart(), cdsSeq.getEnd() } }), cdsref.getMap().getMap() + .getToRanges(), 3, 1); + Mapping cdsmap = new Mapping(cdsref.getMap().getTo(), cdsref.getMap() + .getMap()); + + // create dbref + DBRefEntry newref = new DBRefEntry(cdsref.getSource(), + cdsref.getVersion(), cdsref.getAccessionId(), new Mapping( + cdsmap.getTo(), cdsposmap)); + + // and see if we can map to the protein product for this mapping. + // onSource is the filtered set of accessions on protein that we are + // tranferring, so we assume accession is the same. + if (cdsmap.getTo() == null && onSource != null) + { + List sourceRefs = DBRefUtils.searchRefs(onSource, + cdsref.getAccessionId()); + if (sourceRefs != null) + { + for (DBRefEntry srcref : sourceRefs) + { + if (srcref.getSource().equalsIgnoreCase(cdsref.getSource())) + { + // we have found a complementary dbref on the protein product, so + // update mapping's getTo + newref.getMap().setTo(proteinProduct); + } + } + } + } + cdsSeq.addDBRef(newref); + propagated.add(newref); + } + return propagated; + } + + /** + * Transfers co-located features on 'fromSeq' to 'toSeq', adjusting the + * feature start/end ranges, optionally omitting specified feature types. + * Returns the number of features copied. + * + * @param fromSeq + * @param toSeq + * @param select + * if not null, only features of this type are copied (including + * subtypes in the Sequence Ontology) + * @param mapping + * the mapping from 'fromSeq' to 'toSeq' + * @param omitting + */ + public static int transferFeatures(SequenceI fromSeq, SequenceI toSeq, + MapList mapping, String select, String... omitting) + { + SequenceI copyTo = toSeq; + while (copyTo.getDatasetSequence() != null) + { + copyTo = copyTo.getDatasetSequence(); + } + + SequenceOntologyI so = SequenceOntologyFactory.getInstance(); + int count = 0; + SequenceFeature[] sfs = fromSeq.getSequenceFeatures(); + if (sfs != null) + { + for (SequenceFeature sf : sfs) + { + String type = sf.getType(); + if (select != null && !so.isA(type, select)) + { + continue; + } + boolean omit = false; + for (String toOmit : omitting) + { + if (type.equals(toOmit)) + { + omit = true; + } + } + if (omit) + { + continue; + } + + /* + * locate the mapped range - null if either start or end is + * not mapped (no partial overlaps are calculated) + */ + int start = sf.getBegin(); + int end = sf.getEnd(); + int[] mappedTo = mapping.locateInTo(start, end); + /* + * if whole exon range doesn't map, try interpreting it + * as 5' or 3' exon overlapping the CDS range + */ + if (mappedTo == null) + { + mappedTo = mapping.locateInTo(end, end); + if (mappedTo != null) + { + /* + * end of exon is in CDS range - 5' overlap + * to a range from the start of the peptide + */ + mappedTo[0] = 1; + } + } + if (mappedTo == null) + { + mappedTo = mapping.locateInTo(start, start); + if (mappedTo != null) + { + /* + * start of exon is in CDS range - 3' overlap + * to a range up to the end of the peptide + */ + mappedTo[1] = toSeq.getLength(); + } + } + if (mappedTo != null) + { + SequenceFeature copy = new SequenceFeature(sf); + copy.setBegin(Math.min(mappedTo[0], mappedTo[1])); + copy.setEnd(Math.max(mappedTo[0], mappedTo[1])); + copyTo.addSequenceFeature(copy); + count++; + } + } + } + return count; + } + + /** + * Returns a mapping from dna to protein by inspecting sequence features of + * type "CDS" on the dna. + * + * @param dnaSeq + * @param proteinSeq + * @return + */ + public static MapList mapCdsToProtein(SequenceI dnaSeq, + SequenceI proteinSeq) + { + List ranges = findCdsPositions(dnaSeq); + int mappedDnaLength = MappingUtils.getLength(ranges); + + int proteinLength = proteinSeq.getLength(); + int proteinStart = proteinSeq.getStart(); + int proteinEnd = proteinSeq.getEnd(); + + /* + * incomplete start codon may mean X at start of peptide + * we ignore both for mapping purposes + */ + if (proteinSeq.getCharAt(0) == 'X') + { + // todo JAL-2022 support startPhase > 0 + proteinStart++; + proteinLength--; + } + List proteinRange = new ArrayList(); + + /* + * dna length should map to protein (or protein plus stop codon) + */ + int codesForResidues = mappedDnaLength / CODON_LENGTH; + if (codesForResidues == (proteinLength + 1)) + { + // assuming extra codon is for STOP and not in peptide + codesForResidues--; + } + if (codesForResidues == proteinLength) + { + proteinRange.add(new int[] { proteinStart, proteinEnd }); + return new MapList(ranges, proteinRange, CODON_LENGTH, 1); + } + return null; + } + + /** + * Returns a list of CDS ranges found (as sequence positions base 1), i.e. of + * start/end positions of sequence features of type "CDS" (or a sub-type of + * CDS in the Sequence Ontology). The ranges are sorted into ascending start + * position order, so this method is only valid for linear CDS in the same + * sense as the protein product. + * + * @param dnaSeq + * @return + */ + public static List findCdsPositions(SequenceI dnaSeq) + { + List result = new ArrayList(); + SequenceFeature[] sfs = dnaSeq.getSequenceFeatures(); + if (sfs == null) + { + return result; + } + + SequenceOntologyI so = SequenceOntologyFactory.getInstance(); + int startPhase = 0; + + for (SequenceFeature sf : sfs) + { + /* + * process a CDS feature (or a sub-type of CDS) + */ + if (so.isA(sf.getType(), SequenceOntologyI.CDS)) + { + int phase = 0; + try + { + phase = Integer.parseInt(sf.getPhase()); + } catch (NumberFormatException e) + { + // ignore + } + /* + * phase > 0 on first codon means 5' incomplete - skip to the start + * of the next codon; example ENST00000496384 + */ + int begin = sf.getBegin(); + int end = sf.getEnd(); + if (result.isEmpty()) + { + begin += phase; + if (begin > end) + { + // shouldn't happen! + System.err + .println("Error: start phase extends beyond start CDS in " + + dnaSeq.getName()); + } + } + result.add(new int[] { begin, end }); + } + } + + /* + * remove 'startPhase' positions (usually 0) from the first range + * so we begin at the start of a complete codon + */ + if (!result.isEmpty()) + { + // TODO JAL-2022 correctly model start phase > 0 + result.get(0)[0] += startPhase; + } + + /* + * Finally sort ranges by start position. This avoids a dependency on + * keeping features in order on the sequence (if they are in order anyway, + * the sort will have almost no work to do). The implicit assumption is CDS + * ranges are assembled in order. Other cases should not use this method, + * but instead construct an explicit mapping for CDS (e.g. EMBL parsing). + */ + Collections.sort(result, new Comparator() + { + @Override + public int compare(int[] o1, int[] o2) + { + return Integer.compare(o1[0], o2[0]); + } + }); + return result; + } + + /** + * Maps exon features from dna to protein, and computes variants in peptide + * product generated by variants in dna, and adds them as sequence_variant + * features on the protein sequence. Returns the number of variant features + * added. + * + * @param dnaSeq + * @param peptide + * @param dnaToProtein + */ + public static int computeProteinFeatures(SequenceI dnaSeq, + SequenceI peptide, MapList dnaToProtein) + { + while (dnaSeq.getDatasetSequence() != null) + { + dnaSeq = dnaSeq.getDatasetSequence(); + } + while (peptide.getDatasetSequence() != null) + { + peptide = peptide.getDatasetSequence(); + } + + transferFeatures(dnaSeq, peptide, dnaToProtein, SequenceOntologyI.EXON); + + /* + * compute protein variants from dna variants and codon mappings; + * NB - alternatively we could retrieve this using the REST service e.g. + * http://rest.ensembl.org/overlap/translation + * /ENSP00000288602?feature=transcript_variation;content-type=text/xml + * which would be a bit slower but possibly more reliable + */ + + /* + * build a map with codon variations for each potentially varying peptide + */ + LinkedHashMap[]> variants = buildDnaVariantsMap( + dnaSeq, dnaToProtein); + + /* + * scan codon variations, compute peptide variants and add to peptide sequence + */ + int count = 0; + for (Entry[]> variant : variants.entrySet()) + { + int peptidePos = variant.getKey(); + List[] codonVariants = variant.getValue(); + count += computePeptideVariants(peptide, peptidePos, codonVariants); + } + + /* + * sort to get sequence features in start position order + * - would be better to store in Sequence as a TreeSet or NCList? + */ + if (peptide.getSequenceFeatures() != null) + { + Arrays.sort(peptide.getSequenceFeatures(), + new Comparator() + { + @Override + public int compare(SequenceFeature o1, SequenceFeature o2) + { + int c = Integer.compare(o1.getBegin(), o2.getBegin()); + return c == 0 ? Integer.compare(o1.getEnd(), o2.getEnd()) + : c; + } + }); + } + return count; + } + + /** + * Computes non-synonymous peptide variants from codon variants and adds them + * as sequence_variant features on the protein sequence (one feature per + * allele variant). Selected attributes (variant id, clinical significance) + * are copied over to the new features. + * + * @param peptide + * the protein sequence + * @param peptidePos + * the position to compute peptide variants for + * @param codonVariants + * a list of dna variants per codon position + * @return the number of features added + */ + static int computePeptideVariants(SequenceI peptide, int peptidePos, + List[] codonVariants) + { + String residue = String.valueOf(peptide.getCharAt(peptidePos - 1)); + int count = 0; + String base1 = codonVariants[0].get(0).base; + String base2 = codonVariants[1].get(0).base; + String base3 = codonVariants[2].get(0).base; + + /* + * variants in first codon base + */ + for (DnaVariant var : codonVariants[0]) + { + if (var.variant != null) + { + String alleles = (String) var.variant.getValue("alleles"); + if (alleles != null) + { + for (String base : alleles.split(",")) + { + String codon = base + base2 + base3; + if (addPeptideVariant(peptide, peptidePos, residue, var, codon)) + { + count++; + } + } + } + } + } + + /* + * variants in second codon base + */ + for (DnaVariant var : codonVariants[1]) + { + if (var.variant != null) + { + String alleles = (String) var.variant.getValue("alleles"); + if (alleles != null) + { + for (String base : alleles.split(",")) + { + String codon = base1 + base + base3; + if (addPeptideVariant(peptide, peptidePos, residue, var, codon)) + { + count++; + } + } + } + } + } + + /* + * variants in third codon base + */ + for (DnaVariant var : codonVariants[2]) + { + if (var.variant != null) + { + String alleles = (String) var.variant.getValue("alleles"); + if (alleles != null) + { + for (String base : alleles.split(",")) + { + String codon = base1 + base2 + base; + if (addPeptideVariant(peptide, peptidePos, residue, var, codon)) + { + count++; + } + } + } + } + } + + return count; + } + + /** + * Helper method that adds a peptide variant feature, provided the given codon + * translates to a value different to the current residue (is a non-synonymous + * variant). ID and clinical_significance attributes of the dna variant (if + * present) are copied to the new feature. + * + * @param peptide + * @param peptidePos + * @param residue + * @param var + * @param codon + * @return true if a feature was added, else false + */ + static boolean addPeptideVariant(SequenceI peptide, int peptidePos, + String residue, DnaVariant var, String codon) + { + /* + * get peptide translation of codon e.g. GAT -> D + * note that variants which are not single alleles, + * e.g. multibase variants or HGMD_MUTATION etc + * are currently ignored here + */ + String trans = codon.contains("-") ? "-" + : (codon.length() > CODON_LENGTH ? null : ResidueProperties + .codonTranslate(codon)); + if (trans != null && !trans.equals(residue)) + { + String residue3Char = StringUtils + .toSentenceCase(ResidueProperties.aa2Triplet.get(residue)); + String trans3Char = StringUtils + .toSentenceCase(ResidueProperties.aa2Triplet.get(trans)); + String desc = "p." + residue3Char + peptidePos + trans3Char; + // set score to 0f so 'graduated colour' option is offered! JAL-2060 + SequenceFeature sf = new SequenceFeature( + SequenceOntologyI.SEQUENCE_VARIANT, desc, peptidePos, + peptidePos, 0f, var.getSource()); + StringBuilder attributes = new StringBuilder(32); + String id = (String) var.variant.getValue(ID); + if (id != null) + { + if (id.startsWith(SEQUENCE_VARIANT)) + { + id = id.substring(SEQUENCE_VARIANT.length()); + } + sf.setValue(ID, id); + attributes.append(ID).append("=").append(id); + // TODO handle other species variants JAL-2064 + StringBuilder link = new StringBuilder(32); + try + { + link.append(desc) + .append(" ") + .append(id) + .append("|http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=") + .append(URLEncoder.encode(id, "UTF-8")); + sf.addLink(link.toString()); + } catch (UnsupportedEncodingException e) + { + // as if + } + } + String clinSig = (String) var.variant.getValue(CLINICAL_SIGNIFICANCE); + if (clinSig != null) + { + sf.setValue(CLINICAL_SIGNIFICANCE, clinSig); + attributes.append(";").append(CLINICAL_SIGNIFICANCE).append("=") + .append(clinSig); + } + peptide.addSequenceFeature(sf); + if (attributes.length() > 0) + { + sf.setAttributes(attributes.toString()); + } + return true; + } + return false; + } + + /** + * Builds a map whose key is position in the protein sequence, and value is a + * list of the base and all variants for each corresponding codon position + * + * @param dnaSeq + * @param dnaToProtein + * @return + */ + @SuppressWarnings("unchecked") + static LinkedHashMap[]> buildDnaVariantsMap( + SequenceI dnaSeq, MapList dnaToProtein) + { + /* + * map from peptide position to all variants of the codon which codes for it + * LinkedHashMap ensures we keep the peptide features in sequence order + */ + LinkedHashMap[]> variants = new LinkedHashMap[]>(); + SequenceOntologyI so = SequenceOntologyFactory.getInstance(); + + SequenceFeature[] dnaFeatures = dnaSeq.getSequenceFeatures(); + if (dnaFeatures == null) + { + return variants; + } + + int dnaStart = dnaSeq.getStart(); + int[] lastCodon = null; + int lastPeptidePostion = 0; + + /* + * build a map of codon variations for peptides + */ + for (SequenceFeature sf : dnaFeatures) + { + int dnaCol = sf.getBegin(); + if (dnaCol != sf.getEnd()) + { + // not handling multi-locus variant features + continue; + } + if (so.isA(sf.getType(), SequenceOntologyI.SEQUENCE_VARIANT)) + { + int[] mapsTo = dnaToProtein.locateInTo(dnaCol, dnaCol); + if (mapsTo == null) + { + // feature doesn't lie within coding region + continue; + } + int peptidePosition = mapsTo[0]; + List[] codonVariants = variants.get(peptidePosition); + if (codonVariants == null) + { + codonVariants = new ArrayList[CODON_LENGTH]; + codonVariants[0] = new ArrayList(); + codonVariants[1] = new ArrayList(); + codonVariants[2] = new ArrayList(); + variants.put(peptidePosition, codonVariants); + } + + /* + * extract dna variants to a string array + */ + String alls = (String) sf.getValue("alleles"); + if (alls == null) + { + continue; + } + String[] alleles = alls.toUpperCase().split(","); + int i = 0; + for (String allele : alleles) + { + alleles[i++] = allele.trim(); // lose any space characters "A, G" + } + + /* + * get this peptide's codon positions e.g. [3, 4, 5] or [4, 7, 10] + */ + int[] codon = peptidePosition == lastPeptidePostion ? lastCodon + : MappingUtils.flattenRanges(dnaToProtein.locateInFrom( + peptidePosition, peptidePosition)); + lastPeptidePostion = peptidePosition; + lastCodon = codon; + + /* + * save nucleotide (and any variant) for each codon position + */ + for (int codonPos = 0; codonPos < CODON_LENGTH; codonPos++) + { + String nucleotide = String.valueOf( + dnaSeq.getCharAt(codon[codonPos] - dnaStart)) + .toUpperCase(); + List codonVariant = codonVariants[codonPos]; + if (codon[codonPos] == dnaCol) + { + if (!codonVariant.isEmpty() + && codonVariant.get(0).variant == null) + { + /* + * already recorded base value, add this variant + */ + codonVariant.get(0).variant = sf; + } + else + { + /* + * add variant with base value + */ + codonVariant.add(new DnaVariant(nucleotide, sf)); + } + } + else if (codonVariant.isEmpty()) + { + /* + * record (possibly non-varying) base value + */ + codonVariant.add(new DnaVariant(nucleotide)); + } + } + } + } + return variants; + } + + /** + * Makes an alignment with a copy of the given sequences, adding in any + * non-redundant sequences which are mapped to by the cross-referenced + * sequences. + * + * @param seqs + * @param xrefs + * @param dataset + * the alignment dataset shared by the new copy + * @return + */ + public static AlignmentI makeCopyAlignment(SequenceI[] seqs, + SequenceI[] xrefs, AlignmentI dataset) + { + AlignmentI copy = new Alignment(new Alignment(seqs)); + copy.setDataset(dataset); + boolean isProtein = !copy.isNucleotide(); + SequenceIdMatcher matcher = new SequenceIdMatcher(seqs); + if (xrefs != null) + { + for (SequenceI xref : xrefs) + { + DBRefEntry[] dbrefs = xref.getDBRefs(); + if (dbrefs != null) + { + for (DBRefEntry dbref : dbrefs) + { + if (dbref.getMap() == null || dbref.getMap().getTo() == null + || dbref.getMap().getTo().isProtein() != isProtein) + { + continue; + } + SequenceI mappedTo = dbref.getMap().getTo(); + SequenceI match = matcher.findIdMatch(mappedTo); + if (match == null) + { + matcher.add(mappedTo); + copy.addSequence(mappedTo); + } + } + } + } + } + return copy; + } + + /** + * Try to align sequences in 'unaligned' to match the alignment of their + * mapped regions in 'aligned'. For example, could use this to align CDS + * sequences which are mapped to their parent cDNA sequences. + * + * This method handles 1:1 mappings (dna-to-dna or protein-to-protein). For + * dna-to-protein or protein-to-dna use alternative methods. + * + * @param unaligned + * sequences to be aligned + * @param aligned + * holds aligned sequences and their mappings + * @return + */ + public static int alignAs(AlignmentI unaligned, AlignmentI aligned) + { + /* + * easy case - aligning a copy of aligned sequences + */ + if (alignAsSameSequences(unaligned, aligned)) + { + return unaligned.getHeight(); + } + + /* + * fancy case - aligning via mappings between sequences + */ + List unmapped = new ArrayList(); + Map> columnMap = buildMappedColumnsMap( + unaligned, aligned, unmapped); + int width = columnMap.size(); + char gap = unaligned.getGapCharacter(); + int realignedCount = 0; + // TODO: verify this loop scales sensibly for very wide/high alignments + + for (SequenceI seq : unaligned.getSequences()) + { + if (!unmapped.contains(seq)) + { + char[] newSeq = new char[width]; + Arrays.fill(newSeq, gap); // JBPComment - doubt this is faster than the + // Integer iteration below + int newCol = 0; + int lastCol = 0; + + /* + * traverse the map to find columns populated + * by our sequence + */ + for (Integer column : columnMap.keySet()) + { + Character c = columnMap.get(column).get(seq); + if (c != null) + { + /* + * sequence has a character at this position + * + */ + newSeq[newCol] = c; + lastCol = newCol; + } + newCol++; + } + + /* + * trim trailing gaps + */ + if (lastCol < width) + { + char[] tmp = new char[lastCol + 1]; + System.arraycopy(newSeq, 0, tmp, 0, lastCol + 1); + newSeq = tmp; + } + // TODO: optimise SequenceI to avoid char[]->String->char[] + seq.setSequence(String.valueOf(newSeq)); + realignedCount++; + } + } + return realignedCount; + } + + /** + * If unaligned and aligned sequences share the same dataset sequences, then + * simply copies the aligned sequences to the unaligned sequences and returns + * true; else returns false + * + * @param unaligned + * - sequences to be aligned based on aligned + * @param aligned + * - 'guide' alignment containing sequences derived from same dataset + * as unaligned + * @return + */ + static boolean alignAsSameSequences(AlignmentI unaligned, + AlignmentI aligned) + { + if (aligned.getDataset() == null || unaligned.getDataset() == null) + { + return false; // should only pass alignments with datasets here + } + + // map from dataset sequence to alignment sequence(s) + Map> alignedDatasets = new HashMap>(); + for (SequenceI seq : aligned.getSequences()) + { + SequenceI ds = seq.getDatasetSequence(); + if (alignedDatasets.get(ds) == null) + { + alignedDatasets.put(ds, new ArrayList()); + } + alignedDatasets.get(ds).add(seq); + } + + /* + * first pass - check whether all sequences to be aligned share a dataset + * sequence with an aligned sequence + */ + for (SequenceI seq : unaligned.getSequences()) + { + if (!alignedDatasets.containsKey(seq.getDatasetSequence())) + { + return false; + } + } + + /* + * second pass - copy aligned sequences; + * heuristic rule: pair off sequences in order for the case where + * more than one shares the same dataset sequence + */ + for (SequenceI seq : unaligned.getSequences()) + { + List alignedSequences = alignedDatasets.get(seq + .getDatasetSequence()); + // TODO: getSequenceAsString() will be deprecated in the future + // TODO: need to leave to SequenceI implementor to update gaps + seq.setSequence(alignedSequences.get(0).getSequenceAsString()); + if (alignedSequences.size() > 0) + { + // pop off aligned sequences (except the last one) + alignedSequences.remove(0); + } + } + + return true; + } + + /** + * Returns a map whose key is alignment column number (base 1), and whose + * values are a map of sequence characters in that column. + * + * @param unaligned + * @param aligned + * @param unmapped + * @return + */ + static Map> buildMappedColumnsMap( + AlignmentI unaligned, AlignmentI aligned, List unmapped) + { + /* + * Map will hold, for each aligned column position, a map of + * {unalignedSequence, characterPerSequence} at that position. + * TreeMap keeps the entries in ascending column order. + */ + Map> map = new TreeMap>(); + + /* + * record any sequences that have no mapping so can't be realigned + */ + unmapped.addAll(unaligned.getSequences()); + + List mappings = aligned.getCodonFrames(); + + for (SequenceI seq : unaligned.getSequences()) + { + for (AlignedCodonFrame mapping : mappings) + { + SequenceI fromSeq = mapping.findAlignedSequence(seq, aligned); + if (fromSeq != null) + { + Mapping seqMap = mapping.getMappingBetween(fromSeq, seq); + if (addMappedPositions(seq, fromSeq, seqMap, map)) + { + unmapped.remove(seq); + } + } + } + } + return map; + } + + /** + * Helper method that adds to a map the mapped column positions of a sequence.
+ * For example if aaTT-Tg-gAAA is mapped to TTTAAA then the map should record + * that columns 3,4,6,10,11,12 map to characters T,T,T,A,A,A of the mapped to + * sequence. + * + * @param seq + * the sequence whose column positions we are recording + * @param fromSeq + * a sequence that is mapped to the first sequence + * @param seqMap + * the mapping from 'fromSeq' to 'seq' + * @param map + * a map to add the column positions (in fromSeq) of the mapped + * positions of seq + * @return + */ + static boolean addMappedPositions(SequenceI seq, SequenceI fromSeq, + Mapping seqMap, Map> map) + { + if (seqMap == null) + { + return false; + } + + /* + * invert mapping if it is from unaligned to aligned sequence + */ + if (seqMap.getTo() == fromSeq.getDatasetSequence()) + { + seqMap = new Mapping(seq.getDatasetSequence(), seqMap.getMap() + .getInverse()); + } + + char[] fromChars = fromSeq.getSequence(); + int toStart = seq.getStart(); + char[] toChars = seq.getSequence(); + + /* + * traverse [start, end, start, end...] ranges in fromSeq + */ + for (int[] fromRange : seqMap.getMap().getFromRanges()) + { + for (int i = 0; i < fromRange.length - 1; i += 2) + { + boolean forward = fromRange[i + 1] >= fromRange[i]; + + /* + * find the range mapped to (sequence positions base 1) + */ + int[] range = seqMap.locateMappedRange(fromRange[i], + fromRange[i + 1]); + if (range == null) + { + System.err.println("Error in mapping " + seqMap + " from " + + fromSeq.getName()); + return false; + } + int fromCol = fromSeq.findIndex(fromRange[i]); + int mappedCharPos = range[0]; + + /* + * walk over the 'from' aligned sequence in forward or reverse + * direction; when a non-gap is found, record the column position + * of the next character of the mapped-to sequence; stop when all + * the characters of the range have been counted + */ + while (mappedCharPos <= range[1] && fromCol <= fromChars.length + && fromCol >= 0) + { + if (!Comparison.isGap(fromChars[fromCol - 1])) + { + /* + * mapped from sequence has a character in this column + * record the column position for the mapped to character + */ + Map seqsMap = map.get(fromCol); + if (seqsMap == null) + { + seqsMap = new HashMap(); + map.put(fromCol, seqsMap); + } + seqsMap.put(seq, toChars[mappedCharPos - toStart]); + mappedCharPos++; + } + fromCol += (forward ? 1 : -1); + } + } + } + return true; + } + + // strictly temporary hack until proper criteria for aligning protein to cds + // are in place; this is so Ensembl -> fetch xrefs Uniprot aligns the Uniprot + public static boolean looksLikeEnsembl(AlignmentI alignment) + { + for (SequenceI seq : alignment.getSequences()) + { + String name = seq.getName(); + if (!name.startsWith("ENSG") && !name.startsWith("ENST")) + { + return false; + } + } + return true; } }