update version to 1.9, and date to today.
[jalview-manual.git] / TheJalviewTutorial.tex
index cba41ca..22b3c42 100644 (file)
@@ -74,39 +74,38 @@ Exercise \theecount  :  #1  }
 
 {\Huge
  
-Jalview 2.10.0}
+Jalview 2.10.1}
 \vspace{0.5in}
 {\huge 
 
 Manual and  Introductory Tutorial }
 
-\vspace{2.4in}
+\vspace{2.2in}
 
 {\large
 
-David Martin, James Procter, Andrew Waterhouse, Saif Shehata, Nancy Giang,
+David Martin, James Procter 
 
+Andrew Waterhouse, Saif Shehata, Nancy Giang 
 
-Suzanne Duce and Geoff Barton
+Mungo Carstairs, Charles Ofoegbu, Kira Mour\~{a}o
+
+Suzanne Duce and Geoff Barton 
 
 }
 
-\vspace{1.2in}
+\vspace{0.9in}
 
 School of Life Sciences, University of Dundee
 
 Dundee, Scotland DD1 5EH, UK
 
-
 \vspace{2in}
+Manual Version 1.9
 
-Manual Version 1.8
-% post CLS lifesci course on 15th January
-% draft. Remaining items are AACon, RNA visualization/editing and Protein disorder analysis exercises.
-
-7th October 2016
-
+% for CLS lifesci course 2017 & St Andrews course
+%  Remaining items are AACon, RNA visualization/editing and Protein disorder analysis exercises.
+20th February 2017
 
 \end{center}
 
@@ -169,7 +168,13 @@ visualization of sequence alignments, and their interactive analysis. Tree
 building, principal components analysis, physico-chemical property conservation
 and sequence consensus analyses are built into the program. Web services enable
 Jalview to access online alignment and secondary structure prediction programs,
-as well as to retrieve protein and nucleic acid sequences, alignments, protein structures and sequence annotation. Sequences, alignments, trees, structures, features and alignment annotation may also be exchanged with the local filesystem. Multiple visualizations of an alignment may be worked on simultaneously, and the user interface provides a comprehensive set of controls for colouring and layout. Alignment views are dynamically linked with Jmol structure displays, a tree viewer and spatial cluster display, facilitating interactive exploration of the alignment's structure. The application provides its own Jalview project file format in order to store the current state of an alignment and analysis windows. Jalview also provides WYSIWIG\footnote{WYSIWIG: What You See Is What You Get.} style figure generation capabilities for the preparation of alignments for publication.
+as well as to retrieve protein and nucleic acid sequences, alignments, protein structures and sequence annotation. 
+Sequences, alignments, trees, structures, features and alignment annotation may also be exchanged with the local filesystem. 
+Multiple visualizations of an alignment may be worked on simultaneously, and the user interface provides a comprehensive set of controls for colouring and layout. 
+Alignment views are dynamically linked with Jmol and UCSF Chimera\footnote{UCSF Chimera needs to be installed separately. It is available free for academic use from \url{https://www.cgl.ucsf.edu/chimera/download.html}.} structure displays,
+a tree viewer and spatial cluster display, facilitating interactive exploration of the alignment's structure. The application provides its own Jalview project file format in order 
+to store the current state of an alignment and analysis windows. Jalview also provides WYSIWIG\footnote{WYSIWIG: What You See Is What You Get.} style
+ figure generation capabilities for the preparation of alignments for publication.
 \begin{figure}[htbp]
 \begin{center}
 \includegraphics[width=5.8in]{images/jvcapabilities.pdf}
@@ -209,21 +214,23 @@ Jalview Java alignment editor"} \newline Michele Clamp, James Cuff, Stephen M. S
 \subsection{About this Tutorial }
 
 This tutorial is written in a manual format with short exercises where
-appropriate, typically at the end of each section. This chapter concerns the
+appropriate, typically at the end of each section. The first few sections concerns the
 basic operation of Jalview and should be sufficient for those who want to
 launch Jalview (Section \ref{startingjv}), open an alignment (Section
 \ref{loadingseqs}), perform basic editing (Section
 \ref{selectingandediting}), colouring (Section \ref{colours}), and produce
 publication and presentation quality graphical output (Section \ref{layoutandoutput}).
 
-In addition, the manual covers the additional visualization and
-analysis techniques available in Jalview. This includes working
-with the embedded Jmol molecular structure viewer, building and viewing trees and PCA
-plots, and using trees for sequence conservation analysis. An overview of
+The remaining sections of the manual cover the visualization and
+analysis techniques available in Jalview. These include working
+with the embedded Jmol molecular structure viewer (or UCSF Chimera), building
+and viewing trees and Principal Components Analysis (PCA) plots, and using
+trees for sequence conservation analysis. An overview of
 the Jalview Desktop's webservices is given in Section \ref{jvwebservices}, and
 the alignment and secondary structure prediction services are described
-in detail in Sections \ref{msaservices} and \ref{protsspredservices}. Section \ref{featannot} details the creation and visualization of sequence
-and alignment annotation. Section \ref{workingwithnuc} discusses
+in detail in Sections \ref{msaservices} and \ref{protsspredservices}
+respectively.
+Section \ref{featannot} details the creation and visualization of sequence and alignment annotation. Section \ref{workingwithnuc} discusses
 specific features of use when working with nucleic acid sequences, such as translation and linking to protein
 coding regions, and the display and analysis of RNA secondary structure.
 
@@ -236,8 +243,8 @@ coding regions, and the display and analysis of RNA secondary structure.
 Keystrokes using the special non-symbol keys are represented in the tutorial by
 enclosing the pressed keys with square brackets ({\em e.g.} [RETURN] or [CTRL]).
 
-Keystroke combinations are combined with a `-' symbol ({\em e.g.} [CTRL]-C means
-press [CTRL] and the `C' key) simultaneously.
+Keystroke combinations are denoted with a `-' symbol ({\em
+e.g.} [CTRL]-C means press [CTRL] and the `C' key simultaneously).
 
 Menu options are given as a path from the menu
 that contains them - for example {\sl File $\Rightarrow$ Input Alignment
@@ -308,7 +315,7 @@ When Jalview starts it will automatically load an example alignment from the
 Jalview site. This behaviour can be switched off in the Jalview Desktop
 preferences dialog  by unchecking the open file option.
 This alignment will look like the one in Figure \ref{startpage} (taken
-from Jalview version 2.7).
+from Jalview version 2.10.1).
 
 %[figure 3 ]
 \begin{figure}[htbp]
@@ -410,6 +417,7 @@ kept informed of new releases and developments.
 Archives and mailing list
 subscription details can be found in the Jalview web site's \href{http://www.jalview.org/community}{community section}.
 
+
 \section{Navigation}
 \label{jvnavigation}
 The major features of the Jalview Desktop are illustrated in Figure \ref{anatomy}. The alignment window is the primary window for editing and visualization, and can contain several independent views of the alignment being worked with. The other windows (Trees, Structures, PCA plots, etc) are linked to a specific alignment view. Each area of the alignment window has a separate context menu accessed by clicking the right mouse button.  
@@ -417,10 +425,12 @@ The major features of the Jalview Desktop are illustrated in Figure \ref{anatomy
  Jalview has two navigation and editing modes: {\bf normal mode}, where
  editing and navigation is performed using the mouse, and {\bf cursor mode}
  where editing and navigation are performed using the keyboard. The {\bf F2 key}
- is used to switch between these two modes. With a Mac as the F2 is
- often assigned to screen brightness, one may often need to  type {\bf function
- [Fn] key with F2} function
- [Fn]-F2.
+ is used to switch between these two modes. 
+ {\em Note:} On MacBooks and other laptops with compact keyboards, you may need
+ to press the {\bf function key [Fn]} when pressing any of the numbered function
+ keys. So to toggle between keyboard and normal mode, press [Fn]-[F2].
 
 \begin{figure}[htb]
 \begin{center}
@@ -488,7 +498,7 @@ the arrow keys ($\uparrow$, $\downarrow$, $\leftarrow$, $\rightarrow$).
 Rapid movement to specific positions is accomplished as listed below:
 \begin{list}{$\circ$}{}
 \item {\bf Jump to Sequence {\sl n}:} Type a number {\sl n} then press [S] to
-move to sequence (row). {\sl n}
+move to sequence (row) {\sl n}.
 \item {\bf Jump to Column {\sl n}:} Type a number {\sl n} then press [C] to move to column {\sl n} in the alignment.  
 \item {\bf Jump to Residue {\sl n}:} Type a number {\sl n} then press [P] to move to residue number {\sl n} in the current sequence.  
 \item {\bf Jump to  column {\sl m} row {\sl n}:} Type the column number {\sl m}, a comma, the row number {\sl n} and press [RETURN]. 
@@ -614,7 +624,7 @@ do this. One is to right-click on the desktop background, and select the
 `Paste to new window' option in the menu that appears. The other is to select
 {\sl File $\Rightarrow$ Input Alignment $\Rightarrow$ From Textbox} from the
 main menu, paste the sequences into the text window that will appear, and select
-{sl New Window} (Figure \ref{loadtext}). In both cases, presuming that they are
+{\sl New Window} (Figure \ref{loadtext}). In both cases, presuming that they are
 in the right format, Jalview will happily read them into a new alignment window.
 %[fig 8]
 
@@ -850,7 +860,11 @@ To select the same residues in all sequences, click and drag along the alignment
 This selects the entire column of the alignment. Ranges of positions from the
 alignment ruler can also be selected by clicking on the first position and then
 holding down the [SHIFT] key whilst clicking the other end of the selection.
-Discontinuous regions can be selected by holding down [CTRL] and clicking on positions to add to the column selection. Note that each [CTRL]-Click changes the current selected sequence region to that column, but adds to the column selection. Selected columns are indicated by red highlighting in the ruler bar (Figure \ref{selectcols}).
+Discontinuous regions can be selected by holding down [CTRL] and clicking on
+positions to add to the column selection. Note that each [CTRL]-Click (PC) or
+[CMD]-Click (Mac) changes the current selected sequence region to that column,
+but adds to the column selection.
+Selected columns are indicated by red highlighting in the ruler bar (Figure \ref{selectcols}).
 %[fig 13]
 
 \begin{figure}[htbp]
@@ -998,8 +1012,8 @@ The current selection can be copied to the clipboard (in PFAM format). It can
 also be output to a textbox using the output functions in the pop-up menu
 obtained by right clicking the current selection. The textbox enables quick
 manual editing of the alignment prior to importing it into a new window (using
-the [New Window] button) or saving to a file with the {\sl File $\Rightarrow$
-Save As } pulldown menu option from the text box.
+the {\sl New Window} button) or saving to a file with the {\sl File
+$\Rightarrow$ Save As } pulldown menu option from the text box.
 
 \section{Reordering an Alignment}
 Sequence reordering is simple. Highlight the sequences to be moved then press the up or down arrow keys as appropriate (Figure \ref{reorder}). If you wish to move a sequence up past several other sequences it is often quicker to select the group past which you want to move it and then move the group rather than the individual sequence.
@@ -1167,31 +1181,6 @@ any residue in the selection or group to the immediate right of the position in
 Gaps can be removed by dragging the residue to the immediate right of the gap
 leftwards whilst holding down [SHIFT] (for single sequences) or [CTRL] (for a group of sequences).
 
-\subsection{Sliding Sequences}
-Pressing the [$\leftarrow$] or [$\rightarrow$] arrow keys when one or more
-sequences are selected will ``slide'' the entire selected sequences to the left
-or right (respectively). Slides occur regardless of the region selection -
-which, for example, allows you to easily reposition misaligned subfamilies
-within a larger alignment.
-% % better idea to introduce hiding sequences, and use the invert selection, hide
-% others, to simplify manual alignment construction
-
-\subsection{Editing in Cursor mode}
-Gaps can be easily inserted when in cursor mode (toggled with [F2]) by
-pressing [SPACE]. Gaps will be inserted at the cursor, shifting the residue
-under the cursor to the right. To insert {\sl n} gaps type {\sl n} and then
-press [SPACE]. To insert gaps into all sequences of a group, use [CTRL]-[SPACE]
-or [SHIFT]-[SPACE] (both keys held down together).
-
-Gaps can be removed in cursor mode by pressing [BACKSPACE]. First make sure you
-have everything unselected by pressing ESC. The gap under the cursor will be
-removed. To remove {\sl n} gaps, type {\sl n} and then press [BACKSPACE]. Gaps
-will be deleted up to the number specified. To delete gaps from all sequences of
-a group, press [CTRL]-[BACKSPACE] or [SHIFT]-[BACKSPACE] (both keys held down
-together). Note that the deletion will only occur if the gaps are in the same
-columns in all sequences in the selected group, and those columns are to the
-right of the selected residue.
-
 \newpage
 
 \exercise{Editing Alignments}
@@ -1271,6 +1260,31 @@ option, or their keyboard shortcuts ([CTRL]-Z and [CTRL]-Y) to step
 backwards and replay the edits you have made.}
 }
 
+\subsection{Sliding Sequences}
+Pressing the [$\leftarrow$] or [$\rightarrow$] arrow keys when one or more
+sequences are selected will ``slide'' the entire selected sequences to the left
+or right (respectively). Slides occur regardless of the region selection -
+which, for example, allows you to easily reposition misaligned subfamilies
+within a larger alignment.
+% % better idea to introduce hiding sequences, and use the invert selection, hide
+% others, to simplify manual alignment construction
+
+\subsection{Editing in Cursor mode}
+Gaps can be easily inserted when in cursor mode (toggled with [F2]) by
+pressing [SPACE]. Gaps will be inserted at the cursor, shifting the residue
+under the cursor to the right. To insert {\sl n} gaps type {\sl n} and then
+press [SPACE]. To insert gaps into all sequences of a group, use [CTRL]-[SPACE]
+or [SHIFT]-[SPACE] (both keys held down together).
+
+Gaps can be removed in cursor mode by pressing [BACKSPACE]. First make sure you
+have everything unselected by pressing ESC. The gap under the cursor will be
+removed. To remove {\sl n} gaps, type {\sl n} and then press [BACKSPACE]. Gaps
+will be deleted up to the number specified. To delete gaps from all sequences of
+a group, press [CTRL]-[BACKSPACE] or [SHIFT]-[BACKSPACE] (both keys held down
+together). Note that the deletion will only occur if the gaps are in the same
+columns in all sequences in the selected group, and those columns are to the
+right of the selected residue.
+
 
 \exercise{Keyboard Edits}
 {This continues on from the previous exercise, and recreates the final part of the example ferredoxin
@@ -1522,6 +1536,23 @@ secondary structure row is present on the alignment.
 } \parbox[c]{3in}{
 \includegraphics[width=2.75in]{images/col_rnahelix.pdf} }
 
+\subsubsection{User Defined}
+This dialog allows the user to create any number of named colour schemes at
+will. Any residue may be assigned any colour. The colour scheme can then be
+named. If you save the colour scheme, this name will appear on the Colour menu
+(Figure \ref{usercol}).
+
+
+\begin{figure}[htbp]
+\begin{center}
+\includegraphics[width=2.5in]{images/col_user1.pdf}
+\includegraphics[width=2in]{images/col_user2.pdf}
+\includegraphics[width=1.75in]{images/col_user3.pdf}
+\caption{{\bf Creation of a user defined colour scheme.} Residue types are assigned colours (left). The profile is saved (center) and can then be accessed {\sl via} the {\sl Colour} menu (right).}
+\label{usercol}
+\end{center}
+\end{figure}
+
 \exercise{Colouring Alignments}{
 \label{color}
 Note: Before you begin this exercise, ensure that the {\sl Apply Colour
@@ -1552,23 +1583,6 @@ toggled off by going to {\sl View  $\Rightarrow$ Show Sequence Features}.
 {\bf See the video at: \url{http://www.jalview.org/training/Training-Videos}.}
 }
 
-\subsubsection{User Defined}
-This dialog allows the user to create any number of named colour schemes at
-will. Any residue may be assigned any colour. The colour scheme can then be
-named. If you save the colour scheme, this name will appear on the Colour menu
-(Figure \ref{usercol}).
-
-
-\begin{figure}[htbp]
-\begin{center}
-\includegraphics[width=2.5in]{images/col_user1.pdf}
-\includegraphics[width=2in]{images/col_user2.pdf}
-\includegraphics[width=1.75in]{images/col_user3.pdf}
-\caption{{\bf Creation of a user defined colour scheme.} Residue types are assigned colours (left). The profile is saved (center) and can then be accessed {\sl via} the {\sl Colour} menu (right).}
-\label{usercol}
-\end{center}
-\end{figure}
-
 
 \exercise{User Defined Colour Schemes}{
 \exstep{Load a sequence alignment. Select the alignment menu option {\sl Colour $\Rightarrow$ User Defined}. A dialog window will open.}
@@ -1769,8 +1783,8 @@ Conversely, sequence features are properties of the individual sequences, so the
 but are shown mapped on to specific residues within the alignment. 
 
 Features and annotation can be interactively created, or retrieved from external
-data sources. Webservices like JNet (see \ref{jpred} above) can be used to analyse a 
-given sequence or alignment and generate annotation for it.
+data sources. Webservices like JPred (see \ref{jpred} above) can be used to
+analyse a given sequence or alignment and generate annotation for it.
 
 
 \section{Conservation, Quality and Consensus Annotation}
@@ -1970,7 +1984,8 @@ the features will be displayed incorrectly.
 
 You can export all the database cross references and annotation terms shown in
 the sequence ID tooltip for a sequence by right-clicking and selecting the {\sl
-[Sequence ID] $\Rightarrow$ Sequence details \ldots} option from the popup menu.
+[Sequence ID] $\Rightarrow$ Sequence details \ldots} option from the popup
+menu.
 A similar option is provided in the {\sl Selection} sub-menu allowing you to
 obtain annotation for the sequences currently selected. 
 
@@ -2015,8 +2030,8 @@ then you may be asked if you wish to retrieve Uniprot IDs for your sequence. Pre
 If a sequence is verified, then the start/end numbering will be adjusted to match the Uniprot record. 
 
 \subsubsection{Rate of Feature Retrieval}
-Feature retrieval can take some time if a large number of sources is selected and if the alignment 
-contains a large number of sequences.  
+Feature retrieval can take some time if a large number of sources are selected
+and if the alignment contains a large number of sequences.  
 As features are retrieved, they are immediately added to the current alignment view.
 The retrieved features are shown on the sequence and can be customised as described previously.
 
@@ -2228,7 +2243,7 @@ Omega. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R,
 McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) {\sl Molecular
 Systems Biology} {\bf 7} 539
 \href{http://dx.doi.org/10.1038/msb.2011.75}{doi:10.1038/msb.2011.75}} Of these,
-T-COFFEE is slow but the accurate. ClustalW is historically
+T-COFFEE is slow but accurate. ClustalW is historically
 the most widely used. Muscle is fast and probably best for
 smaller alignments. MAFFT is probably the best for large alignments,
 however Clustal Omega, released in 2011, is arguably the fastest and most
@@ -2507,13 +2522,15 @@ position between each pair of sequences. The basic method is described in the
 Nature Structural Biology} (1995) {\bf 2}, 171-8.
 PMID: 7749921} and implemented at the SeqSpace server at the EBI.
 
-Jalview provides two different options for the PCA calculation. Protein PCAs are
-by default computed using BLOSUM 62 pairwise substitution scores, and nucleic
-acid alignment PCAs are computed using a score model based on the identity
-matrix that also treats Us and Ts as identical, to support analysis of both RNA
-and DNA alignments. The {\sl Change Parameters} menu also allows the calculation
-method to be toggled between SeqSpace and a variant calculation that is detailed
-in Jalview's built in documentation.\footnote{See
+Jalview provides two different options for the PCA calculation: SeqSpace and
+Jalview mode. In SeqSpace mode, PCAs are computed using the identity matrix, and
+gaps are treated as 'the unknown residue' (this actually differs from the
+original SeqSpace paper, and will be adjusted in a future version of Jalview).
+In Jalview mode, PCAs are computed using the chosen score matrix - which for
+protein sequences, defaults to BLOSUM 62, and for nucleotides, is the
+DNA identity matrix that also treats Us and Ts as identical, to support analysis
+of both RNA and DNA alignments. The {\sl Change Parameters} allows the
+calculation method and score models to be changed.\footnote{See
 \url{http://www.jalview.org/help/html/calculations/pca.html}.}
 
 \subsubsection{The PCA Viewer}
@@ -2584,7 +2601,7 @@ region or the whole alignment, excluding any hidden regions.
 
 On calculating a tree, a new window opens (Figure \ref{trees1}) which contains
 the tree. Various display settings can be found in the tree window {\sl View}
-menu, including font, scaling and label display options, and the {\sl File
+menu, including font, scaling and label display options. The {\sl File
 $\Rightarrow$ Save As} submenu contains options for image and Newick file
 export. Newick format is a standard file format for trees which allows them to
 be exported to other programs.  Jalview can also read in external trees in
@@ -2916,36 +2933,41 @@ viewing program\footnote{See the Jmol homepage \url{http://www.jmol.org} for
 more information.} integrated with Jalview.\footnote{Earlier
 versions of Jalview included MCView - a simple main chain structure viewer.
 Structures are visualized as an alpha carbon trace and can be viewed, rotated
-and coloured in a structure viewer and the results interpreted on a sequence
-alignment.} It also supports the use of UCSF Chimera, a powerful molecular
-graphics system that needs separate installation. Jalview can also read PDB and
-mmCIF format files directly to extract sequences and secondary structure
-information, and retrieve records from the European Protein
-Databank (PDBe) using the Sequence Fetcher (see \ref{fetchseq}).
+and coloured using the sequence alignment.} It also supports the use of UCSF
+Chimera, a powerful molecular graphics system that needs separate installation.
+Jalview can also read PDB and mmCIF format files directly to extract sequences
+and secondary structure information, and retrieve records from the European
+Protein Databank (PDBe) using the Sequence Fetcher (see \ref{fetchseq}).
 
 \subsection{Configuring the default structure viewer}
 \label{configuring3dviewer}
-To configure which one is used when creating a new
+To configure which viewer is used when creating a new
 structure view, open the Structures preferences window {\sl via} {\sl Tools $\Rightarrow$ Preferences\ldots} and
 select either JMOL or CHIMERA as the default viewer. If you select Chimera,
 Jalview will search for the installed program, and if it cannot be found,
-you will be prompted to locate the Chimera binary, or directed to the UCSF
-Chimera download page.
+you will be prompted to locate the Chimera binary, or alternately, open the UCSF
+Chimera download page to obtain the software.
 
 \section{Automatic Association of PDB Structures with Sequences}
-Jalview can automatically determine which structures are associated with a
-sequence via its ID, and any associated database references. To do this, open
-the Sequence ID popup menu and select {\sl View 3D Structure}, to open the 3D
-Structure Chooser. 
+Jalview will attempt to automatically determine which structures are associated
+with a sequence via its ID, and any associated database references. To do this
+for a particular sequence or the current selection, open the Sequence ID popup
+menu and select {\sl View 3D Structure}, to open the 3D Structure Chooser. 
 %(Figure\ref{auto}). 
 
 When the structure chooser is first opened, if no database identifiers are
-available, Jalview will attempt to discover identifiers for the sequence and from there discover any
-associated PDB structures. This can take a few seconds for each sequence and
-while be performed for all selected sequences. After this is done, you can see
-added database references in a tool tip by mousing over the sequence ID.
-\footnote{Tip:
-The sequence ID tooltip can often become large for heavily cross referenced sequence IDs. Use the {\sl View $\Rightarrow$ Sequence ID Tooltip $\Rightarrow$ } submenu to disable the display of database cross references or non-positional features. } now shows the Uniprot ID and any associated PDB structures.
+available, Jalview will automatically perform a database reference
+retrieval (See \ref{fetchdbrefs}) to discover identifiers for the
+sequences to use to search the PDB. This can take a
+few seconds for each sequence and will be performed for all selected
+sequences.\footnote{After this is done, you can can see the added database
+references in a tool tip by mousing over the sequence ID. You can use the {\sl
+View $\Rightarrow$ Sequence ID Tooltip $\Rightarrow$ Show Db References }
+submenu option to enable or disable these data in the tooltip.}
+
+Once the retrieval has finished, the structure chooser dialog will show any
+available PDB entries for the selected sequences.
+
 % 
 % \begin{figure}[htbp]
 % \begin{center}
@@ -2963,12 +2985,11 @@ The sequence ID tooltip can often become large for heavily cross referenced sequ
 \subsection{Drag-and-Drop Association of PDB Files with Sequences by Filename
 Match}
 \label{multipdbfileassoc}
-If one or more PDB files stored on your computer are dragged from their location
-on the file browser onto an alignment window, Jalview will search the alignment
-for sequences with IDs that match any of the files dropped onto the alignment.
-If it discovers matches, a dialog like the one in Figure
-\ref{multipdbfileassocfig} is shown, giving the option of creating associations
-for the matches.
+If you have PDB files stored on your computer named the same way as the
+sequences in the alignment, then you can drag them from their location on the
+file browser onto an alignment window. Jalview will search the alignment for
+sequences with IDs that match any of the files, and offer a dialog like the one
+in Figure \ref{multipdbfileassocfig}.
 
 If no associations are made, then sequences extracted
 from the structure will be simply added to the alignment. However, if only
@@ -2981,6 +3002,12 @@ future so Jalview will automatically search for PDB files matching your
 sequence within a local directory. Check out 
 \href{http://issues.jalview.org/browse/JAL-801}{Jalview issue 801}}
 
+After associating sequences with PDB files, you can view the PDB structures by
+opening the Sequence ID popup
+menu and selecting {\sl View 3D Structure}. The PDB files you loaded will be
+shown in the {\bf Cached Structures} view, after selecting it from the drop down
+menu in the dialog box. 
+
 % there is no mention of the other footnote (#3) that appears saying: Tip: The sequence ID tooltip can often become large for heavily cross-referenced sequence IDs. Use the ...
 % JBP: yes there is - under 'Discovery of ' subsection.
 \begin{figure}[htbp]
@@ -2997,27 +3024,34 @@ file with any sequences with matching IDs. }
 
 
 \section{Viewing Structures}
-\label{viewAllStructures}
-The structure viewer is launched from the sequence ID context
-menu. To view a particular structure associated with a sequence in the
-alignment, select the sequence and right click the mouse to open context
-menu {\sl Structure $\Rightarrow$ 3D Structure data $\Rightarrow$} opens a Structure Chooser dialog box.
-The second way is most useful if you want to view all structural data available for
-a set of sequences in an alignment. Select all the sequence ids in the sequence
-ID panel and right click the mouse to open context
-menu {\sl Structure $\Rightarrow$ 3D Structure data $\Rightarrow$}. If any of
-the {\bf currently selected} sequences have structures associated they will
-appear in the Structure Chooser dialog box. The structures can be ranked by
-different parameters, 'Best Quality' is defaul option. Select the
-structures required and click {\sl View} to open a structure viewer containing
-the associated structures superposed according to the alignment.
-
-The structure to be displayed will be downloaded or loaded from
+\label{structurechooser}
+The structure viewer is launched via the Sequence ID context
+menu. To view structures associated with a sequence or a selected set of
+sequences in the alignment, simply right click the mouse to open the context
+menu, and select {\sl 3D Structure data \ldots} to open the Structure Chooser
+dialog box. 
+
+If any of
+the {\bf currently selected} sequences have structures in the PDB, 
+they will appear in the Structure Chooser dialog box. The structures can be ranked by
+different parameters, but are by default ordered according to their PDB
+quality score. 
+
+To view one or more structures, simply click {\sl
+View} to open a structure viewer containing the structures selected in the
+dialog. If several structures were picked, these will be shown
+superposed according to the alignment.
+You may find Jalview has already picked the best structure - using one of the
+criteria shown in the dropdown menu (e.g. 'Best Quality', which is picked by
+default). However, you are free to select your own.
+
+The structure(s) to be displayed will be downloaded or loaded from
 the local file system, and shown as a ribbon diagram coloured according to the
 associated sequence in the current alignment view (Figure \ref{structure}
 (right)). The structure can be rotated by clicking and dragging in the structure
 window. The structure can be zoomed using the mouse scroll wheel or by
 [SHIFT]-dragging the structure.
+
 Moving the mouse cursor over a sequence to which the structure is linked in the
 alignment view highlights the respective residue's sidechain atoms. The
 sidechain highlight may be obscured by other parts of the molecule. Similarly,
@@ -3032,21 +3066,23 @@ disabled for the current view.
 
 \begin{figure}[htbp]
 \begin{center}
-\parbox{3in}{
+\parbox{4in}{
 {\centering 
 \begin{center}
-\includegraphics[scale=0.5]{images/structure1.pdf}
+\includegraphics[width=4in]{images/structure1.pdf}
 \end{center}
 }
 }
-\parbox{3.2in}{
+\parbox{2.2in}{
 {\centering 
 \begin{center}
-\includegraphics[width=3in]{images/structure2.pdf}
+\includegraphics[width=2.2in]{images/structure2.pdf}
 \end{center}
 }
 }
-\caption{{\bf Structure visualization} The structure viewer is launched from the sequence ID context menu (left) and allows the structure to be visualized using the embedded Jmol molecular viewer (right). }
+\caption{{\bf Structure visualization} Structure viewers are launched from
+the 3D Structure chooser dialog (left). Jalview shows the displayed structures
+coloured according the alignment view (right). }
 \label{structure}
 \end{center}
 \end{figure}
@@ -3065,7 +3101,7 @@ alignment using the {\sl Colours $\Rightarrow$ By Sequence } option. The image
 in the structure viewer can be saved as an EPS or PNG with the {\sl File
 $\Rightarrow$ Save As $\Rightarrow$ \ldots} submenu, which also allows the raw
 data to be saved as PDB format. The mapping between the structure and the
-sequence (How well and which parts of the structure relate to the sequence) can
+sequence (how well and which parts of the structure relate to the sequence) can
 be viewed with the {\sl File $\Rightarrow$ View Mapping} menu option.
 
 \subsubsection{Using the Jmol Visualization Interface }
@@ -3252,16 +3288,6 @@ Note that the {\sl Select many views} option is useful if you have different
 views that colour different areas or domains of the alignment. This option is
 further explored in Section \ref{complexstructurecolours}.
 
-\begin{figure}[htbp]
-\begin{center}
-\includegraphics[width=5.5in]{images/mviewstructurecol.pdf}
-\caption{{\bf Choosing a different view for colouring a structure display}
-Browsing the {\sl View $\Rightarrow$ Colour by ..} menu provides full control
-of which alignment view is used to colour structures when the {\sl Colours
-$\Rightarrow$ By Sequence} option is selected.}
-\label{mviewstructurecol}
-\end{center}
-\end{figure}
 
 \exercise{Aligning Structures using the Ferredoxin
 Sequence Alignment}{\label{superpositionex}
@@ -3303,6 +3329,17 @@ displaying the console).
 
 Which view do you think give the best 3D superposition, and why ?} }
 
+\begin{figure}[htbp]
+\begin{center}
+\includegraphics[width=5.5in]{images/mviewstructurecol.pdf}
+\caption{{\bf Choosing a different view for colouring a structure display}
+Browsing the {\sl View $\Rightarrow$ Colour by ..} menu provides full control
+of which alignment view is used to colour structures when the {\sl Colours
+$\Rightarrow$ By Sequence} option is selected.}
+\label{mviewstructurecol}
+\end{center}
+\end{figure}
+
 \subsubsection{Colouring Complexes}
 \label{complexstructurecolours}
 The ability to control which multiple alignment view is used to colour
@@ -3445,14 +3482,15 @@ prediction on the first sequence in the set (that is, the one that appears first
 \begin{center}
 \includegraphics[width=2.25in]{images/jpred1.pdf}
 \includegraphics[width=3in]{images/jpred2.pdf}
-\caption{{\bf Secondary Structure Prediction} Status (left) and results (right) windows for JNet predictions. }
+\caption{{\bf Secondary Structure Prediction} Status (left) and results (right)
+windows for JPred predictions. }
 \label{jpred}
 \end{center}
 \end{figure}
 
 
 Jpred is launched in the same way as the other web services. Select {\sl Web
-Service $\Rightarrow$ Secondary Structure Prediction $\Rightarrow$ JNet
+Service $\Rightarrow$ Secondary Structure Prediction $\Rightarrow$ JPred
 Secondary Structure Prediction}\footnote{JNet is the Neural Network based
 secondary structure prediction method that the JPred server uses.} from the
 alignment window menu (Figure \ref{jpred}).
@@ -3460,7 +3498,7 @@ A status window opens to inform you of the progress of the job. Upon completion,
 predictions are included as annotations. Consult the Jpred documentation for
 information on interpreting these results.
 
-\subsection{Hidden Columns and JNet Predictions}
+\subsection{Hidden Columns and JPred Predictions}
 \label{hcoljnet}
 Hidden columns can be used to exclude parts of a sequence or profile from the
 input sent to the JNet service. For instance, if a sequence is known to include
@@ -3482,15 +3520,17 @@ The Annotations dropdown menu on the alignment wndow also provides options for
 reording and hiding autocalculated and sequence associated annotation. }
 
 \exstep{ Open the alignment at \url{http://www.jalview.org/tutorial/alignment.fa}. Select the sequence {\sl FER\_MESCR} by 
-clicking on the sequence ID. Then select {\sl Web Service $\Rightarrow$ Secondary Structure Prediction $\Rightarrow$ JNet Secondary Structure Prediction} 
-from the alignment window menu. A status window will appear and after some time (about 2-4 min) a new window with the JPred prediction will appear. 
+clicking on the sequence ID. Then select {\sl Web Service $\Rightarrow$
+Secondary Structure Prediction $\Rightarrow$ JPred Secondary Structure
+Prediction} from the alignment window menu. A status window will appear and after some time (about 2-4 min) a new window with the JPred prediction will appear.
 Note that the number of sequences in the results window is many more than in the original alignment as 
-JNet performs a PSI-BLAST search to expand the prediction dataset. The results
-from the prediction are visible in the annotation panel. Jnet secondary
+JPred performs a PSI-BLAST search to expand the prediction dataset. The results
+from the prediction are visible in the annotation panel. JPred secondary
 structure prediction annotations are examples of sequence-associated alignment annotation. }
 % TODO: check how long this takes - about 2 mins once it gets on the cluster.
 \exstep{
-Select a different sequence and perform a JNet prediction in the same way. There will probably be minor differences in the predictions.
+Select a different sequence and perform a JPred prediction in the same way.
+There will probably be minor differences in the predictions.
 }
 \exstep{
 Select the sequence used in the second sequence prediction by clicking on its
@@ -3516,15 +3556,12 @@ sequences, then open the {\sl Sequence ID $\Rightarrow$ Selection } submenu
 by right clicking the mouse to open the context menu, and select the {\sl Add
 Reference Annotation} option.
 
-{\bf All} the JNet predictions for the sequences will now be visible in the
+{\bf All} the JPred predictions for the sequences will now be visible in the
 original alignment window.}
 
 {\bf Homework:} Go back to the last step of exercise \ref{annotatingalignex} and
 follow the instructions to view the Jalview annotations file created from the annotations
-generated by the JPred server for your sequence.
-
-}
-
+generated by the JPred server for your sequence.}
 
 \section{Protein Disorder Prediction}
 \label{protdisorderpred}
@@ -3535,7 +3572,6 @@ function. The {\sl Web Service $\Rightarrow$ Disorder} menu in the alignment win
 allows access to protein disorder prediction services provided by the configured
 JABAWS servers. 
 
-
 \begin{figure}[htbp]
 \begin{center}
 \includegraphics[width=5in]{images/disorderpredannot.pdf}
@@ -3545,7 +3581,6 @@ zoomed out view of a prediction for a single sequence. The sequence is shaded to
 \end{center}
 \end{figure}
 
-
 \subsection{Disorder Prediction Results}
 Each service operates on sequences in the alignment to identify regions likely
 to be unstructured or flexible, or alternately, fold to form globular domains.
@@ -3556,7 +3591,6 @@ the manipulation and display of these data in detail, and Figure
 thresholding (described in Section \ref{featureschemes}) can be used to
 highlight differences in disorder prediction across aligned sequences.
 
-
 \begin{figure}[htbp]
 \begin{center}
 \includegraphics[width=5in]{images/disorderpred.pdf}
@@ -3575,7 +3609,6 @@ prediction annotation rows, clicking on the annotation row label will highlight
 the associated sequence in the alignment display, and double clicking will
 select that sequence.
 
-
 \subsection{Disorder Predictors provided by JABAWS 2.0}
 For full details of each predictor and the results that Jalview can display,
 please consult
@@ -3689,16 +3722,10 @@ Sequence ID $\Rightarrow$ 3D Structure Data\ldots } popup menu. Hit the
 available temperature factors to the alignment {\sl via} the {\sl Sequence ID
 Popup $\Rightarrow$ Selection $\Rightarrow$ Add reference annotation} option.}
 
-\exstep{Apply the IUPred disorder prediction method.} 
-\exstep{Use the {\sl Per
+\exstep{Apply the IUPred disorder prediction method. Use the {\sl Per
 sequence option} in the {\sl Colour $\Rightarrow$ By annotation \ldots} dialog to shade
-the sequences by the long and short disorder predictors.
-
-{\sl Note how well the regions predicted to be disordered by the methods agree
-with the structure.}
-}
-
-}
+the sequences by the long and short disorder predictors. {\sl Note how well the disordered regions predicted by each method agree
+with the structure.}}}
 
 \chapter{DNA and RNA Sequences}
 \label{dnarna}
@@ -3709,7 +3736,7 @@ now includes some specific features for working with nucleic acid sequences
 and alignments. Jalview recognises nucleotide sequences and alignments based on
 the presence of nucleotide symbols [ACGT] in greater than 85\% of the
 sequences. Built in codon-translation tables can be used to translate ORFs
-into peptides for further analysis. EMBL nucleotide records retrieved {\sl via} the
+into peptides for further analysis. ENA nucleotide records retrieved {\sl via} the
 sequence fetcher (see Section \ref{fetchseq}) are also parsed in order to
 identify codon regions and extract peptide products. Furthermore, Jalview
 records mappings between protein sequences that are derived from regions of a
@@ -3797,7 +3824,7 @@ window is only available when working with a nucleic acid alignment. It uses the
 \subsection{Linked DNA and Protein Views}
 
 \parbox{3.5in}{
-Views of alignments involving DNA sequences are linked to views of alignments containing their peptide products in a similar way to views of protein sequences and views of their associated structures. Peptides translated from cDNA that have been fetched from EMBL records for DNA contigs are linked to their `parent' coding regions. Mousing over a region of the peptide highlights codons in views showing the original coding region.
+Views of alignments involving DNA sequences are linked to views of alignments containing their peptide products in a similar way to views of protein sequences and views of their associated structures. Peptides translated from cDNA that have been fetched from ENA records for DNA contigs are linked to their `parent' coding regions. Mousing over a region of the peptide highlights codons in views showing the original coding region.
 }\parbox{3in}{
 \begin{center}
 %\begin{figure}[htbp]
@@ -3810,21 +3837,21 @@ Views of alignments involving DNA sequences are linked to views of alignments co
 }
 
 
-\subsection{Coding Regions from EMBL Records}
+\subsection{Coding Regions from ENA Records}
 
-Many EMBL records that can be retrieved with the sequence fetcher contain exons.
-Coding regions will be marked as features on the EMBL nucleotide sequence, and
+Many ENA records that can be retrieved with the sequence fetcher contain exons.
+Coding regions will be marked as features on the ENA nucleotide sequence, and
 Uniprot database cross references will be listed in the tooltip displayed when
 the mouse hovers over the sequence ID. Uniprot database cross references
-extracted from EMBL records are sequence cross references, and associate a
+extracted from ENA records are sequence cross references, and associate a
 Uniprot sequence's coordinate system with the coding regions annotated on the
-EMBL sequence. Jalview utilises cross-reference information in two ways.
+ENA sequence. Jalview utilises cross-reference information in two ways.
 \subsubsection{Retrieval of Protein or DNA Cross References}
-The {\sl Calculate $\Rightarrow$ Get Cross References } function is only available when Jalview recognises that there are protein/DNA cross-references present on sequences in the alignment. When selected, it retrieves the cross references from the alignment's dataset (a set of sequence and annotation metadata shared between alignments) or using the sequence database fetcher. This function can be used for EMBL sequences containing coding regions to open the Uniprot protein products in a new alignment window. The new alignment window that is opened to show the protein products will also allow dynamic highlighting of codon positions in the EMBL record for each residue in the protein product(s).
+The {\sl Calculate $\Rightarrow$ Get Cross References } function is only available when Jalview recognises that there are protein/DNA cross-references present on sequences in the alignment. When selected, it retrieves the cross references from the alignment's dataset (a set of sequence and annotation metadata shared between alignments) or using the sequence database fetcher. This function can be used for ENA sequences containing coding regions to open the Uniprot protein products in a new alignment window. The new alignment window that is opened to show the protein products will also allow dynamic highlighting of codon positions in the ENA record for each residue in the protein product(s).
 
 \subsubsection{Retrieval of Protein Features on Coding Regions}
 
-The Uniprot cross-references derived from EMBL records can be used by Jalview to visualize protein sequence features directly on nucleotide alignments.
+The Uniprot cross-references derived from ENA records can be used by Jalview to visualize protein sequence features directly on nucleotide alignments.
 This is because the database cross references include the sequence coordinate mapping information to correspond regions on the protein sequence with that of the nucleotide contig. 
 Jalview will use the Uniprot accession numbers associated with the sequence to retrieve features, and then map them onto the nucleotide sequence's coordinate system using 
 the coding region location.
@@ -3835,7 +3862,7 @@ the coding region location.
 \includegraphics[width=5in]{images/dnadasfeatures.pdf}
 
 \caption{Uniprot and PDB sum features retrieved and mapped onto
-coding regions of EMBL record V00488 (an earlier version of Jalview is shown
+coding regions of ENA record V00488 (an earlier version of Jalview is shown
 here).}
 
 \end{center}
@@ -3843,7 +3870,7 @@ here).}
 
 \exercise{Visualizing Protein Features on Coding Regions}
 {
-\exstep{Use the sequence fetcher to retrieve EMBL record D49489.}
+\exstep{Use the sequence fetcher to retrieve ENA record D49489.}
 \exstep{Ensure that {\sl View $\Rightarrow$ Show Sequence Features} is checked and change the 
 alignment view format to {\sl Wrapped} mode so the distinct exons can be seen.}
 \exstep{Open the {\sl DAS Settings} tab in the {\sl Sequence Feature Settings\ldots} 
@@ -4142,7 +4169,7 @@ you should ever need to reset the JABAWS server list to its defaults, use the
 
 \subsection{Running your own JABA Server}
 You can download and run JABA on your own machine using the `VMWare' or
-VirtualBox virtual machine environments. If you would like to learn how to do
+VirtualBox virtual machine environments. If you would like to do
 this, there are full instructions at the
 \href{http://www.compbio.dundee.ac.uk/jabaws/}{JABA web site}.
 
@@ -4164,9 +4191,8 @@ for an email with a download link).}
 WARNING: This is large (about 300MB) and will take some time to download.
 }
 \exstep{Unpack the archive's contents to a place on your machine with at least
-2GB of free space.
-
-(On Windows, right click on the archive, and use the 'Extract archive..' option).
+2GB of free space (On Windows, right click on the archive, and use the 'Extract
+archive..' option).
 }
 \exstep{Open the newly extracted directory and double click the VMWare virtual
 machine configuration file (jabaws.vcf). This will launch the VMWare player.