/* * Jalview - A Sequence Alignment Editor and Viewer (Version 2.9) * Copyright (C) 2015 The Jalview Authors * * This file is part of Jalview. * * Jalview is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, either version 3 * of the License, or (at your option) any later version. * * Jalview is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Jalview. If not, see . * The Jalview Authors are detailed in the 'AUTHORS' file. */ package jalview.analysis; import jalview.api.analysis.ScoreModelI; import jalview.datamodel.AlignmentView; import jalview.datamodel.BinaryNode; import jalview.datamodel.CigarArray; import jalview.datamodel.NodeTransformI; import jalview.datamodel.SeqCigar; import jalview.datamodel.Sequence; import jalview.datamodel.SequenceI; import jalview.datamodel.SequenceNode; import jalview.io.NewickFile; import jalview.schemes.ResidueProperties; import java.util.Enumeration; import java.util.List; import java.util.Vector; /** * DOCUMENT ME! * * @author $author$ * @version $Revision$ */ public class NJTree { Vector cluster; SequenceI[] sequence; // SequenceData is a string representation of what the user // sees. The display may contain hidden columns. public AlignmentView seqData = null; int[] done; int noseqs; int noClus; float[][] distance; int mini; int minj; float ri; float rj; Vector groups = new Vector(); SequenceNode maxdist; SequenceNode top; float maxDistValue; float maxheight; int ycount; Vector node; String type; String pwtype; Object found = null; Object leaves = null; boolean hasDistances = true; // normal case for jalview trees boolean hasBootstrap = false; // normal case for jalview trees private boolean hasRootDistance = true; /** * Create a new NJTree object with leaves associated with sequences in seqs, * and original alignment data represented by Cigar strings. * * @param seqs * SequenceI[] * @param odata * Cigar[] * @param treefile * NewickFile */ public NJTree(SequenceI[] seqs, AlignmentView odata, NewickFile treefile) { this(seqs, treefile); if (odata != null) { seqData = odata; } /* * sequenceString = new String[odata.length]; char gapChar = * jalview.util.Comparison.GapChars.charAt(0); for (int i = 0; i < * odata.length; i++) { SequenceI oseq_aligned = odata[i].getSeq(gapChar); * sequenceString[i] = oseq_aligned.getSequence(); } */ } /** * Creates a new NJTree object from a tree from an external source * * @param seqs * SequenceI which should be associated with leafs of treefile * @param treefile * A parsed tree */ public NJTree(SequenceI[] seqs, NewickFile treefile) { this.sequence = seqs; top = treefile.getTree(); /** * There is no dependent alignment to be recovered from an imported tree. * * if (sequenceString == null) { sequenceString = new String[seqs.length]; * for (int i = 0; i < seqs.length; i++) { sequenceString[i] = * seqs[i].getSequence(); } } */ hasDistances = treefile.HasDistances(); hasBootstrap = treefile.HasBootstrap(); hasRootDistance = treefile.HasRootDistance(); maxheight = findHeight(top); SequenceIdMatcher algnIds = new SequenceIdMatcher(seqs); Vector leaves = new Vector(); findLeaves(top, leaves); int i = 0; int namesleft = seqs.length; SequenceNode j; SequenceI nam; String realnam; Vector one2many = new Vector(); int countOne2Many = 0; while (i < leaves.size()) { j = (SequenceNode) leaves.elementAt(i++); realnam = j.getName(); nam = null; if (namesleft > -1) { nam = algnIds.findIdMatch(realnam); } if (nam != null) { j.setElement(nam); if (one2many.contains(nam)) { countOne2Many++; // if (jalview.bin.Cache.log.isDebugEnabled()) // jalview.bin.Cache.log.debug("One 2 many relationship for // "+nam.getName()); } else { one2many.addElement(nam); namesleft--; } } else { j.setElement(new Sequence(realnam, "THISISAPLACEHLDER")); j.setPlaceholder(true); } } // if (jalview.bin.Cache.log.isDebugEnabled() && countOne2Many>0) { // jalview.bin.Cache.log.debug("There were "+countOne2Many+" alignment // sequence ids (out of "+one2many.size()+" unique ids) linked to two or // more leaves."); // } // one2many.clear(); } /** * Creates a new NJTree object. * * @param sequence * DOCUMENT ME! * @param type * DOCUMENT ME! * @param pwtype * DOCUMENT ME! * @param start * DOCUMENT ME! * @param end * DOCUMENT ME! */ public NJTree(SequenceI[] sequence, AlignmentView seqData, String type, String pwtype, ScoreModelI sm, int start, int end) { this.sequence = sequence; this.node = new Vector(); this.type = type; this.pwtype = pwtype; if (seqData != null) { this.seqData = seqData; } else { SeqCigar[] seqs = new SeqCigar[sequence.length]; for (int i = 0; i < sequence.length; i++) { seqs[i] = new SeqCigar(sequence[i], start, end); } CigarArray sdata = new CigarArray(seqs); sdata.addOperation(CigarArray.M, end - start + 1); this.seqData = new AlignmentView(sdata, start); } // System.err.println("Made seqData");// dbg if (!(type.equals("NJ"))) { type = "AV"; } if (sm == null && !(pwtype.equals("PID"))) { if (ResidueProperties.getScoreMatrix(pwtype) == null) { pwtype = "BLOSUM62"; } } int i = 0; done = new int[sequence.length]; while ((i < sequence.length) && (sequence[i] != null)) { done[i] = 0; i++; } noseqs = i++; distance = findDistances(sm); // System.err.println("Made distances");// dbg makeLeaves(); // System.err.println("Made leaves");// dbg noClus = cluster.size(); cluster(); // System.err.println("Made clusters");// dbg } /** * Generate a string representation of the Tree * * @return Newick File with all tree data available */ public String toString() { jalview.io.NewickFile fout = new jalview.io.NewickFile(getTopNode()); return fout.print(isHasBootstrap(), isHasDistances(), isHasRootDistance()); // output all data available for tree } /** * * used when the alignment associated to a tree has changed. * * @param list * Sequence set to be associated with tree nodes */ public void UpdatePlaceHolders(List list) { Vector leaves = new Vector(); findLeaves(top, leaves); int sz = leaves.size(); SequenceIdMatcher seqmatcher = null; int i = 0; while (i < sz) { SequenceNode leaf = (SequenceNode) leaves.elementAt(i++); if (list.contains(leaf.element())) { leaf.setPlaceholder(false); } else { if (seqmatcher == null) { // Only create this the first time we need it SequenceI[] seqs = new SequenceI[list.size()]; for (int j = 0; j < seqs.length; j++) { seqs[j] = list.get(j); } seqmatcher = new SequenceIdMatcher(seqs); } SequenceI nam = seqmatcher.findIdMatch(leaf.getName()); if (nam != null) { if (!leaf.isPlaceholder()) { // remapping the node to a new sequenceI - should remove any refs to // old one. // TODO - make many sequenceI to one leaf mappings possible! // (JBPNote) } leaf.setPlaceholder(false); leaf.setElement(nam); } else { if (!leaf.isPlaceholder()) { // Construct a new placeholder sequence object for this leaf leaf.setElement(new Sequence(leaf.getName(), "THISISAPLACEHLDER")); } leaf.setPlaceholder(true); } } } } /** * rename any nodes according to their associated sequence. This will modify * the tree's metadata! (ie the original NewickFile or newly generated * BinaryTree's label data) */ public void renameAssociatedNodes() { applyToNodes(new NodeTransformI() { @Override public void transform(BinaryNode node) { Object el = node.element(); if (el != null && el instanceof SequenceI) { node.setName(((SequenceI) el).getName()); } } }); } /** * DOCUMENT ME! */ public void cluster() { while (noClus > 2) { if (type.equals("NJ")) { findMinNJDistance(); } else { findMinDistance(); } Cluster c = joinClusters(mini, minj); done[minj] = 1; cluster.setElementAt(null, minj); cluster.setElementAt(c, mini); noClus--; } boolean onefound = false; int one = -1; int two = -1; for (int i = 0; i < noseqs; i++) { if (done[i] != 1) { if (onefound == false) { two = i; onefound = true; } else { one = i; } } } joinClusters(one, two); top = (SequenceNode) (node.elementAt(one)); reCount(top); findHeight(top); findMaxDist(top); } /** * DOCUMENT ME! * * @param i * DOCUMENT ME! * @param j * DOCUMENT ME! * * @return DOCUMENT ME! */ public Cluster joinClusters(int i, int j) { float dist = distance[i][j]; int noi = ((Cluster) cluster.elementAt(i)).value.length; int noj = ((Cluster) cluster.elementAt(j)).value.length; int[] value = new int[noi + noj]; for (int ii = 0; ii < noi; ii++) { value[ii] = ((Cluster) cluster.elementAt(i)).value[ii]; } for (int ii = noi; ii < (noi + noj); ii++) { value[ii] = ((Cluster) cluster.elementAt(j)).value[ii - noi]; } Cluster c = new Cluster(value); ri = findr(i, j); rj = findr(j, i); if (type.equals("NJ")) { findClusterNJDistance(i, j); } else { findClusterDistance(i, j); } SequenceNode sn = new SequenceNode(); sn.setLeft((SequenceNode) (node.elementAt(i))); sn.setRight((SequenceNode) (node.elementAt(j))); SequenceNode tmpi = (SequenceNode) (node.elementAt(i)); SequenceNode tmpj = (SequenceNode) (node.elementAt(j)); if (type.equals("NJ")) { findNewNJDistances(tmpi, tmpj, dist); } else { findNewDistances(tmpi, tmpj, dist); } tmpi.setParent(sn); tmpj.setParent(sn); node.setElementAt(sn, i); return c; } /** * DOCUMENT ME! * * @param tmpi * DOCUMENT ME! * @param tmpj * DOCUMENT ME! * @param dist * DOCUMENT ME! */ public void findNewNJDistances(SequenceNode tmpi, SequenceNode tmpj, float dist) { tmpi.dist = ((dist + ri) - rj) / 2; tmpj.dist = (dist - tmpi.dist); if (tmpi.dist < 0) { tmpi.dist = 0; } if (tmpj.dist < 0) { tmpj.dist = 0; } } /** * DOCUMENT ME! * * @param tmpi * DOCUMENT ME! * @param tmpj * DOCUMENT ME! * @param dist * DOCUMENT ME! */ public void findNewDistances(SequenceNode tmpi, SequenceNode tmpj, float dist) { float ih = 0; float jh = 0; SequenceNode sni = tmpi; SequenceNode snj = tmpj; while (sni != null) { ih = ih + sni.dist; sni = (SequenceNode) sni.left(); } while (snj != null) { jh = jh + snj.dist; snj = (SequenceNode) snj.left(); } tmpi.dist = ((dist / 2) - ih); tmpj.dist = ((dist / 2) - jh); } /** * DOCUMENT ME! * * @param i * DOCUMENT ME! * @param j * DOCUMENT ME! */ public void findClusterDistance(int i, int j) { int noi = ((Cluster) cluster.elementAt(i)).value.length; int noj = ((Cluster) cluster.elementAt(j)).value.length; // New distances from cluster to others float[] newdist = new float[noseqs]; for (int l = 0; l < noseqs; l++) { if ((l != i) && (l != j)) { newdist[l] = ((distance[i][l] * noi) + (distance[j][l] * noj)) / (noi + noj); } else { newdist[l] = 0; } } for (int ii = 0; ii < noseqs; ii++) { distance[i][ii] = newdist[ii]; distance[ii][i] = newdist[ii]; } } /** * DOCUMENT ME! * * @param i * DOCUMENT ME! * @param j * DOCUMENT ME! */ public void findClusterNJDistance(int i, int j) { // New distances from cluster to others float[] newdist = new float[noseqs]; for (int l = 0; l < noseqs; l++) { if ((l != i) && (l != j)) { newdist[l] = ((distance[i][l] + distance[j][l]) - distance[i][j]) / 2; } else { newdist[l] = 0; } } for (int ii = 0; ii < noseqs; ii++) { distance[i][ii] = newdist[ii]; distance[ii][i] = newdist[ii]; } } /** * DOCUMENT ME! * * @param i * DOCUMENT ME! * @param j * DOCUMENT ME! * * @return DOCUMENT ME! */ public float findr(int i, int j) { float tmp = 1; for (int k = 0; k < noseqs; k++) { if ((k != i) && (k != j) && (done[k] != 1)) { tmp = tmp + distance[i][k]; } } if (noClus > 2) { tmp = tmp / (noClus - 2); } return tmp; } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public float findMinNJDistance() { float min = 100000; for (int i = 0; i < (noseqs - 1); i++) { for (int j = i + 1; j < noseqs; j++) { if ((done[i] != 1) && (done[j] != 1)) { float tmp = distance[i][j] - (findr(i, j) + findr(j, i)); if (tmp < min) { mini = i; minj = j; min = tmp; } } } } return min; } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public float findMinDistance() { float min = 100000; for (int i = 0; i < (noseqs - 1); i++) { for (int j = i + 1; j < noseqs; j++) { if ((done[i] != 1) && (done[j] != 1)) { if (distance[i][j] < min) { mini = i; minj = j; min = distance[i][j]; } } } } return min; } /** * Calculate a distance matrix given the sequence input data and score model * * @return similarity matrix used to compute tree */ public float[][] findDistances(ScoreModelI _pwmatrix) { float[][] distance = new float[noseqs][noseqs]; if (_pwmatrix == null) { // Resolve substitution model _pwmatrix = ResidueProperties.getScoreModel(pwtype); if (_pwmatrix == null) { _pwmatrix = ResidueProperties.getScoreMatrix("BLOSUM62"); } } distance = _pwmatrix.findDistances(seqData); return distance; } /** * DOCUMENT ME! */ public void makeLeaves() { cluster = new Vector(); for (int i = 0; i < noseqs; i++) { SequenceNode sn = new SequenceNode(); sn.setElement(sequence[i]); sn.setName(sequence[i].getName()); node.addElement(sn); int[] value = new int[1]; value[0] = i; Cluster c = new Cluster(value); cluster.addElement(c); } } /** * Search for leaf nodes. * * @param node * root node to search from * @param leaves * Vector of leaves to add leaf node objects too. * * @return Vector of leaf nodes on binary tree */ public Vector findLeaves(SequenceNode node, Vector leaves) { if (node == null) { return leaves; } if ((node.left() == null) && (node.right() == null)) // Interior node // detection { leaves.addElement(node); return leaves; } else { /* * TODO: Identify internal nodes... if (node.isSequenceLabel()) { * leaves.addElement(node); } */ findLeaves((SequenceNode) node.left(), leaves); findLeaves((SequenceNode) node.right(), leaves); } return leaves; } /** * Find the leaf node with a particular ycount * * @param node * initial point on tree to search from * @param count * value to search for * * @return null or the node with ycound=count */ public Object findLeaf(SequenceNode node, int count) { found = _findLeaf(node, count); return found; } /* * #see findLeaf(SequenceNode node, count) */ public Object _findLeaf(SequenceNode node, int count) { if (node == null) { return null; } if (node.ycount == count) { found = node.element(); return found; } else { _findLeaf((SequenceNode) node.left(), count); _findLeaf((SequenceNode) node.right(), count); } return found; } /** * printNode is mainly for debugging purposes. * * @param node * SequenceNode */ public void printNode(SequenceNode node) { if (node == null) { return; } if ((node.left() == null) && (node.right() == null)) { System.out .println("Leaf = " + ((SequenceI) node.element()).getName()); System.out.println("Dist " + node.dist); System.out.println("Boot " + node.getBootstrap()); } else { System.out.println("Dist " + node.dist); printNode((SequenceNode) node.left()); printNode((SequenceNode) node.right()); } } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! */ public void findMaxDist(SequenceNode node) { if (node == null) { return; } if ((node.left() == null) && (node.right() == null)) { float dist = node.dist; if (dist > maxDistValue) { maxdist = node; maxDistValue = dist; } } else { findMaxDist((SequenceNode) node.left()); findMaxDist((SequenceNode) node.right()); } } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public Vector getGroups() { return groups; } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public float getMaxHeight() { return maxheight; } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! * @param threshold * DOCUMENT ME! */ public void groupNodes(SequenceNode node, float threshold) { if (node == null) { return; } if ((node.height / maxheight) > threshold) { groups.addElement(node); } else { groupNodes((SequenceNode) node.left(), threshold); groupNodes((SequenceNode) node.right(), threshold); } } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! * * @return DOCUMENT ME! */ public float findHeight(SequenceNode node) { if (node == null) { return maxheight; } if ((node.left() == null) && (node.right() == null)) { node.height = ((SequenceNode) node.parent()).height + node.dist; if (node.height > maxheight) { return node.height; } else { return maxheight; } } else { if (node.parent() != null) { node.height = ((SequenceNode) node.parent()).height + node.dist; } else { maxheight = 0; node.height = (float) 0.0; } maxheight = findHeight((SequenceNode) (node.left())); maxheight = findHeight((SequenceNode) (node.right())); } return maxheight; } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public SequenceNode reRoot() { if (maxdist != null) { ycount = 0; float tmpdist = maxdist.dist; // New top SequenceNode sn = new SequenceNode(); sn.setParent(null); // New right hand of top SequenceNode snr = (SequenceNode) maxdist.parent(); changeDirection(snr, maxdist); System.out.println("Printing reversed tree"); printN(snr); snr.dist = tmpdist / 2; maxdist.dist = tmpdist / 2; snr.setParent(sn); maxdist.setParent(sn); sn.setRight(snr); sn.setLeft(maxdist); top = sn; ycount = 0; reCount(top); findHeight(top); } return top; } /** * * @return true if original sequence data can be recovered */ public boolean hasOriginalSequenceData() { return seqData != null; } /** * Returns original alignment data used for calculation - or null where not * available. * * @return null or cut'n'pasteable alignment */ public String printOriginalSequenceData(char gapChar) { if (seqData == null) { return null; } StringBuffer sb = new StringBuffer(); String[] seqdatas = seqData.getSequenceStrings(gapChar); for (int i = 0; i < seqdatas.length; i++) { sb.append(new jalview.util.Format("%-" + 15 + "s").form(sequence[i] .getName())); sb.append(" " + seqdatas[i] + "\n"); } return sb.toString(); } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! */ public void printN(SequenceNode node) { if (node == null) { return; } if ((node.left() != null) && (node.right() != null)) { printN((SequenceNode) node.left()); printN((SequenceNode) node.right()); } else { System.out.println(" name = " + ((SequenceI) node.element()).getName()); } System.out.println(" dist = " + node.dist + " " + node.count + " " + node.height); } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! */ public void reCount(SequenceNode node) { ycount = 0; _lycount = 0; // _lylimit = this.node.size(); _reCount(node); } private long _lycount = 0, _lylimit = 0; /** * DOCUMENT ME! * * @param node * DOCUMENT ME! */ public void _reCount(SequenceNode node) { // if (_lycount<_lylimit) // { // System.err.println("Warning: depth of _recount greater than number of nodes."); // } if (node == null) { return; } _lycount++; if ((node.left() != null) && (node.right() != null)) { _reCount((SequenceNode) node.left()); _reCount((SequenceNode) node.right()); SequenceNode l = (SequenceNode) node.left(); SequenceNode r = (SequenceNode) node.right(); node.count = l.count + r.count; node.ycount = (l.ycount + r.ycount) / 2; } else { node.count = 1; node.ycount = ycount++; } _lycount--; } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! */ public void swapNodes(SequenceNode node) { if (node == null) { return; } SequenceNode tmp = (SequenceNode) node.left(); node.setLeft(node.right()); node.setRight(tmp); } /** * DOCUMENT ME! * * @param node * DOCUMENT ME! * @param dir * DOCUMENT ME! */ public void changeDirection(SequenceNode node, SequenceNode dir) { if (node == null) { return; } if (node.parent() != top) { changeDirection((SequenceNode) node.parent(), node); SequenceNode tmp = (SequenceNode) node.parent(); if (dir == node.left()) { node.setParent(dir); node.setLeft(tmp); } else if (dir == node.right()) { node.setParent(dir); node.setRight(tmp); } } else { if (dir == node.left()) { node.setParent(node.left()); if (top.left() == node) { node.setRight(top.right()); } else { node.setRight(top.left()); } } else { node.setParent(node.right()); if (top.left() == node) { node.setLeft(top.right()); } else { node.setLeft(top.left()); } } } } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public SequenceNode getMaxDist() { return maxdist; } /** * DOCUMENT ME! * * @return DOCUMENT ME! */ public SequenceNode getTopNode() { return top; } /** * * @return true if tree has real distances */ public boolean isHasDistances() { return hasDistances; } /** * * @return true if tree has real bootstrap values */ public boolean isHasBootstrap() { return hasBootstrap; } public boolean isHasRootDistance() { return hasRootDistance; } /** * apply the given transform to all the nodes in the tree. * * @param nodeTransformI */ public void applyToNodes(NodeTransformI nodeTransformI) { for (Enumeration nodes = node.elements(); nodes.hasMoreElements(); nodeTransformI .transform((BinaryNode) nodes.nextElement())) { ; } } } /** * DOCUMENT ME! * * @author $author$ * @version $Revision$ */ class Cluster { int[] value; /** * Creates a new Cluster object. * * @param value * DOCUMENT ME! */ public Cluster(int[] value) { this.value = value; } }