JAL-1925 update source version in license
[jalview.git] / src / jalview / analysis / AlignmentUtils.java
index 6385fa7..f2262fb 100644 (file)
@@ -1,6 +1,6 @@
 /*
- * Jalview - A Sequence Alignment Editor and Viewer (Version 2.8.2)
- * Copyright (C) 2014 The Jalview Authors
+ * Jalview - A Sequence Alignment Editor and Viewer (Version 2.9.0b2)
+ * Copyright (C) 2015 The Jalview Authors
  * 
  * This file is part of Jalview.
  * 
  */
 package jalview.analysis;
 
+import jalview.datamodel.AlignedCodon;
+import jalview.datamodel.AlignedCodonFrame;
+import jalview.datamodel.Alignment;
 import jalview.datamodel.AlignmentAnnotation;
 import jalview.datamodel.AlignmentI;
+import jalview.datamodel.DBRefEntry;
+import jalview.datamodel.DBRefSource;
+import jalview.datamodel.FeatureProperties;
+import jalview.datamodel.Mapping;
+import jalview.datamodel.SearchResults;
+import jalview.datamodel.Sequence;
+import jalview.datamodel.SequenceGroup;
 import jalview.datamodel.SequenceI;
+import jalview.schemes.ResidueProperties;
+import jalview.util.DBRefUtils;
+import jalview.util.MapList;
+import jalview.util.MappingUtils;
 
 import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Iterator;
+import java.util.LinkedHashMap;
+import java.util.LinkedHashSet;
 import java.util.List;
+import java.util.Map;
+import java.util.Map.Entry;
+import java.util.Set;
+import java.util.TreeMap;
 
 /**
  * grab bag of useful alignment manipulation operations Expect these to be
@@ -52,18 +77,22 @@ public class AlignmentUtils
     for (SequenceI s : core.getSequences())
     {
       SequenceI newSeq = s.deriveSequence();
-      if (newSeq.getStart() > maxoffset
+      final int newSeqStart = newSeq.getStart() - 1;
+      if (newSeqStart > maxoffset
               && newSeq.getDatasetSequence().getStart() < s.getStart())
       {
-        maxoffset = newSeq.getStart();
+        maxoffset = newSeqStart;
       }
       sq.add(newSeq);
     }
     if (flankSize > -1)
     {
-      maxoffset = flankSize;
+      maxoffset = Math.min(maxoffset, flankSize);
     }
-    // now add offset to create a new expanded alignment
+
+    /*
+     * now add offset left and right to create an expanded alignment
+     */
     for (SequenceI s : sq)
     {
       SequenceI ds = s;
@@ -73,8 +102,8 @@ public class AlignmentUtils
       }
       int s_end = s.findPosition(s.getStart() + s.getLength());
       // find available flanking residues for sequence
-      int ustream_ds = s.getStart() - ds.getStart(), dstream_ds = ds
-              .getEnd() - s_end;
+      int ustream_ds = s.getStart() - ds.getStart();
+      int dstream_ds = ds.getEnd() - s_end;
 
       // build new flanked sequence
 
@@ -90,27 +119,27 @@ public class AlignmentUtils
           offset = maxoffset - flankSize;
           ustream_ds = flankSize;
         }
-        if (flankSize < dstream_ds)
+        if (flankSize <= dstream_ds)
         {
-          dstream_ds = flankSize;
+          dstream_ds = flankSize - 1;
         }
       }
+      // TODO use Character.toLowerCase to avoid creating String objects?
       char[] upstream = new String(ds.getSequence(s.getStart() - 1
               - ustream_ds, s.getStart() - 1)).toLowerCase().toCharArray();
-      char[] downstream = new String(ds.getSequence(s_end - 1, s_end + 1
+      char[] downstream = new String(ds.getSequence(s_end - 1, s_end
               + dstream_ds)).toLowerCase().toCharArray();
       char[] coreseq = s.getSequence();
       char[] nseq = new char[offset + upstream.length + downstream.length
               + coreseq.length];
       char c = core.getGapCharacter();
-      // TODO could lowercase the flanking regions
+
       int p = 0;
       for (; p < offset; p++)
       {
         nseq[p] = c;
       }
-      // s.setSequence(new String(upstream).toLowerCase()+new String(coreseq) +
-      // new String(downstream).toLowerCase());
+
       System.arraycopy(upstream, 0, nseq, p, upstream.length);
       System.arraycopy(coreseq, 0, nseq, p + upstream.length,
               coreseq.length);
@@ -128,6 +157,7 @@ public class AlignmentUtils
       {
         for (AlignmentAnnotation aa : s.getAnnotation())
         {
+          aa.adjustForAlignment(); // JAL-1712 fix
           newAl.addAnnotation(aa);
         }
       }
@@ -159,4 +189,1245 @@ public class AlignmentUtils
     }
     return result;
   }
+
+  /**
+   * Returns a map of lists of sequences in the alignment, keyed by sequence
+   * name. For use in mapping between different alignment views of the same
+   * sequences.
+   * 
+   * @see jalview.datamodel.AlignmentI#getSequencesByName()
+   */
+  public static Map<String, List<SequenceI>> getSequencesByName(
+          AlignmentI al)
+  {
+    Map<String, List<SequenceI>> theMap = new LinkedHashMap<String, List<SequenceI>>();
+    for (SequenceI seq : al.getSequences())
+    {
+      String name = seq.getName();
+      if (name != null)
+      {
+        List<SequenceI> seqs = theMap.get(name);
+        if (seqs == null)
+        {
+          seqs = new ArrayList<SequenceI>();
+          theMap.put(name, seqs);
+        }
+        seqs.add(seq);
+      }
+    }
+    return theMap;
+  }
+
+  /**
+   * Build mapping of protein to cDNA alignment. Mappings are made between
+   * sequences where the cDNA translates to the protein sequence. Any new
+   * mappings are added to the protein alignment. Returns true if any mappings
+   * either already exist or were added, else false.
+   * 
+   * @param proteinAlignment
+   * @param cdnaAlignment
+   * @return
+   */
+  public static boolean mapProteinAlignmentToCdna(
+          final AlignmentI proteinAlignment, final AlignmentI cdnaAlignment)
+  {
+    if (proteinAlignment == null || cdnaAlignment == null)
+    {
+      return false;
+    }
+
+    Set<SequenceI> mappedDna = new HashSet<SequenceI>();
+    Set<SequenceI> mappedProtein = new HashSet<SequenceI>();
+
+    /*
+     * First pass - map sequences where cross-references exist. This include
+     * 1-to-many mappings to support, for example, variant cDNA.
+     */
+    boolean mappingPerformed = mapProteinToCdna(proteinAlignment,
+            cdnaAlignment, mappedDna, mappedProtein, true);
+
+    /*
+     * Second pass - map sequences where no cross-references exist. This only
+     * does 1-to-1 mappings and assumes corresponding sequences are in the same
+     * order in the alignments.
+     */
+    mappingPerformed |= mapProteinToCdna(proteinAlignment, cdnaAlignment,
+            mappedDna, mappedProtein, false);
+    return mappingPerformed;
+  }
+
+  /**
+   * Make mappings between compatible sequences (where the cDNA translation
+   * matches the protein).
+   * 
+   * @param proteinAlignment
+   * @param cdnaAlignment
+   * @param mappedDna
+   *          a set of mapped DNA sequences (to add to)
+   * @param mappedProtein
+   *          a set of mapped Protein sequences (to add to)
+   * @param xrefsOnly
+   *          if true, only map sequences where xrefs exist
+   * @return
+   */
+  protected static boolean mapProteinToCdna(
+          final AlignmentI proteinAlignment,
+          final AlignmentI cdnaAlignment, Set<SequenceI> mappedDna,
+          Set<SequenceI> mappedProtein, boolean xrefsOnly)
+  {
+    boolean mappingExistsOrAdded = false;
+    List<SequenceI> thisSeqs = proteinAlignment.getSequences();
+    for (SequenceI aaSeq : thisSeqs)
+    {
+      boolean proteinMapped = false;
+      AlignedCodonFrame acf = new AlignedCodonFrame();
+
+      for (SequenceI cdnaSeq : cdnaAlignment.getSequences())
+      {
+        /*
+         * Always try to map if sequences have xref to each other; this supports
+         * variant cDNA or alternative splicing for a protein sequence.
+         * 
+         * If no xrefs, try to map progressively, assuming that alignments have
+         * mappable sequences in corresponding order. These are not
+         * many-to-many, as that would risk mixing species with similar cDNA
+         * sequences.
+         */
+        if (xrefsOnly && !AlignmentUtils.haveCrossRef(aaSeq, cdnaSeq))
+        {
+          continue;
+        }
+
+        /*
+         * Don't map non-xrefd sequences more than once each. This heuristic
+         * allows us to pair up similar sequences in ordered alignments.
+         */
+        if (!xrefsOnly
+                && (mappedProtein.contains(aaSeq) || mappedDna
+                        .contains(cdnaSeq)))
+        {
+          continue;
+        }
+        if (mappingExists(proteinAlignment.getCodonFrames(),
+                aaSeq.getDatasetSequence(), cdnaSeq.getDatasetSequence()))
+        {
+          mappingExistsOrAdded = true;
+        }
+        else
+        {
+          MapList map = mapProteinSequenceToCdna(aaSeq, cdnaSeq);
+          if (map != null)
+          {
+            acf.addMap(cdnaSeq, aaSeq, map);
+            mappingExistsOrAdded = true;
+            proteinMapped = true;
+            mappedDna.add(cdnaSeq);
+            mappedProtein.add(aaSeq);
+          }
+        }
+      }
+      if (proteinMapped)
+      {
+        proteinAlignment.addCodonFrame(acf);
+      }
+    }
+    return mappingExistsOrAdded;
+  }
+
+  /**
+   * Answers true if the mappings include one between the given (dataset)
+   * sequences.
+   */
+  public static boolean mappingExists(Set<AlignedCodonFrame> set,
+          SequenceI aaSeq, SequenceI cdnaSeq)
+  {
+    if (set != null)
+    {
+      for (AlignedCodonFrame acf : set)
+      {
+        if (cdnaSeq == acf.getDnaForAaSeq(aaSeq))
+        {
+          return true;
+        }
+      }
+    }
+    return false;
+  }
+
+  /**
+   * Build a mapping (if possible) of a protein to a cDNA sequence. The cDNA
+   * must be three times the length of the protein, possibly after ignoring
+   * start and/or stop codons, and must translate to the protein. Returns null
+   * if no mapping is determined.
+   * 
+   * @param proteinSeqs
+   * @param cdnaSeq
+   * @return
+   */
+  public static MapList mapProteinSequenceToCdna(SequenceI proteinSeq,
+          SequenceI cdnaSeq)
+  {
+    /*
+     * Here we handle either dataset sequence set (desktop) or absent (applet).
+     * Use only the char[] form of the sequence to avoid creating possibly large
+     * String objects.
+     */
+    final SequenceI proteinDataset = proteinSeq.getDatasetSequence();
+    char[] aaSeqChars = proteinDataset != null ? proteinDataset
+            .getSequence() : proteinSeq.getSequence();
+    final SequenceI cdnaDataset = cdnaSeq.getDatasetSequence();
+    char[] cdnaSeqChars = cdnaDataset != null ? cdnaDataset.getSequence()
+            : cdnaSeq.getSequence();
+    if (aaSeqChars == null || cdnaSeqChars == null)
+    {
+      return null;
+    }
+
+    /*
+     * cdnaStart/End, proteinStartEnd are base 1 (for dataset sequence mapping)
+     */
+    final int mappedLength = 3 * aaSeqChars.length;
+    int cdnaLength = cdnaSeqChars.length;
+    int cdnaStart = cdnaSeq.getStart();
+    int cdnaEnd = cdnaSeq.getEnd();
+    final int proteinStart = proteinSeq.getStart();
+    final int proteinEnd = proteinSeq.getEnd();
+
+    /*
+     * If lengths don't match, try ignoring stop codon.
+     */
+    if (cdnaLength != mappedLength && cdnaLength > 2)
+    {
+      String lastCodon = String.valueOf(cdnaSeqChars, cdnaLength - 3, 3)
+              .toUpperCase();
+      for (String stop : ResidueProperties.STOP)
+      {
+        if (lastCodon.equals(stop))
+        {
+          cdnaEnd -= 3;
+          cdnaLength -= 3;
+          break;
+        }
+      }
+    }
+
+    /*
+     * If lengths still don't match, try ignoring start codon.
+     */
+    int startOffset = 0;
+    if (cdnaLength != mappedLength
+            && cdnaLength > 2
+            && String.valueOf(cdnaSeqChars, 0, 3).toUpperCase()
+                    .equals(ResidueProperties.START))
+    {
+      startOffset += 3;
+      cdnaStart += 3;
+      cdnaLength -= 3;
+    }
+
+    if (cdnaLength != mappedLength)
+    {
+      return null;
+    }
+    if (!translatesAs(cdnaSeqChars, startOffset, aaSeqChars))
+    {
+      return null;
+    }
+    MapList map = new MapList(new int[] { cdnaStart, cdnaEnd }, new int[] {
+        proteinStart, proteinEnd }, 3, 1);
+    return map;
+  }
+
+  /**
+   * Test whether the given cdna sequence, starting at the given offset,
+   * translates to the given amino acid sequence, using the standard translation
+   * table. Designed to fail fast i.e. as soon as a mismatch position is found.
+   * 
+   * @param cdnaSeqChars
+   * @param cdnaStart
+   * @param aaSeqChars
+   * @return
+   */
+  protected static boolean translatesAs(char[] cdnaSeqChars, int cdnaStart,
+          char[] aaSeqChars)
+  {
+    if (cdnaSeqChars == null || aaSeqChars == null)
+    {
+      return false;
+    }
+
+    int aaResidue = 0;
+    for (int i = cdnaStart; i < cdnaSeqChars.length - 2
+            && aaResidue < aaSeqChars.length; i += 3, aaResidue++)
+    {
+      String codon = String.valueOf(cdnaSeqChars, i, 3);
+      final String translated = ResidueProperties.codonTranslate(codon);
+      /*
+       * allow * in protein to match untranslatable in dna
+       */
+      final char aaRes = aaSeqChars[aaResidue];
+      if ((translated == null || "STOP".equals(translated)) && aaRes == '*')
+      {
+        continue;
+      }
+      if (translated == null || !(aaRes == translated.charAt(0)))
+      {
+        // debug
+        // System.out.println(("Mismatch at " + i + "/" + aaResidue + ": "
+        // + codon + "(" + translated + ") != " + aaRes));
+        return false;
+      }
+    }
+    // fail if we didn't match all of the aa sequence
+    return (aaResidue == aaSeqChars.length);
+  }
+
+  /**
+   * Align sequence 'seq' to match the alignment of a mapped sequence. Note this
+   * currently assumes that we are aligning cDNA to match protein.
+   * 
+   * @param seq
+   *          the sequence to be realigned
+   * @param al
+   *          the alignment whose sequence alignment is to be 'copied'
+   * @param gap
+   *          character string represent a gap in the realigned sequence
+   * @param preserveUnmappedGaps
+   * @param preserveMappedGaps
+   * @return true if the sequence was realigned, false if it could not be
+   */
+  public static boolean alignSequenceAs(SequenceI seq, AlignmentI al,
+          String gap, boolean preserveMappedGaps,
+          boolean preserveUnmappedGaps)
+  {
+    /*
+     * Get any mappings from the source alignment to the target (dataset)
+     * sequence.
+     */
+    // TODO there may be one AlignedCodonFrame per dataset sequence, or one with
+    // all mappings. Would it help to constrain this?
+    List<AlignedCodonFrame> mappings = al.getCodonFrame(seq);
+    if (mappings == null || mappings.isEmpty())
+    {
+      return false;
+    }
+
+    /*
+     * Locate the aligned source sequence whose dataset sequence is mapped. We
+     * just take the first match here (as we can't align cDNA like more than one
+     * protein sequence).
+     */
+    SequenceI alignFrom = null;
+    AlignedCodonFrame mapping = null;
+    for (AlignedCodonFrame mp : mappings)
+    {
+      alignFrom = mp.findAlignedSequence(seq.getDatasetSequence(), al);
+      if (alignFrom != null)
+      {
+        mapping = mp;
+        break;
+      }
+    }
+
+    if (alignFrom == null)
+    {
+      return false;
+    }
+    alignSequenceAs(seq, alignFrom, mapping, gap, al.getGapCharacter(),
+            preserveMappedGaps, preserveUnmappedGaps);
+    return true;
+  }
+
+  /**
+   * Align sequence 'alignTo' the same way as 'alignFrom', using the mapping to
+   * match residues and codons. Flags control whether existing gaps in unmapped
+   * (intron) and mapped (exon) regions are preserved or not. Gaps linking intro
+   * and exon are only retained if both flags are set.
+   * 
+   * @param alignTo
+   * @param alignFrom
+   * @param mapping
+   * @param myGap
+   * @param sourceGap
+   * @param preserveUnmappedGaps
+   * @param preserveMappedGaps
+   */
+  public static void alignSequenceAs(SequenceI alignTo,
+          SequenceI alignFrom, AlignedCodonFrame mapping, String myGap,
+          char sourceGap, boolean preserveMappedGaps,
+          boolean preserveUnmappedGaps)
+  {
+    // TODO generalise to work for Protein-Protein, dna-dna, dna-protein
+    final char[] thisSeq = alignTo.getSequence();
+    final char[] thatAligned = alignFrom.getSequence();
+    StringBuilder thisAligned = new StringBuilder(2 * thisSeq.length);
+
+    // aligned and dataset sequence positions, all base zero
+    int thisSeqPos = 0;
+    int sourceDsPos = 0;
+
+    int basesWritten = 0;
+    char myGapChar = myGap.charAt(0);
+    int ratio = myGap.length();
+
+    /*
+     * Traverse the aligned protein sequence.
+     */
+    int fromOffset = alignFrom.getStart() - 1;
+    int toOffset = alignTo.getStart() - 1;
+    int sourceGapMappedLength = 0;
+    boolean inExon = false;
+    for (char sourceChar : thatAligned)
+    {
+      if (sourceChar == sourceGap)
+      {
+        sourceGapMappedLength += ratio;
+        continue;
+      }
+
+      /*
+       * Found a residue. Locate its mapped codon (start) position.
+       */
+      sourceDsPos++;
+      // Note mapping positions are base 1, our sequence positions base 0
+      int[] mappedPos = mapping.getMappedRegion(alignTo, alignFrom,
+              sourceDsPos + fromOffset);
+      if (mappedPos == null)
+      {
+        /*
+         * Abort realignment if unmapped protein. Or could ignore it??
+         */
+        System.err.println("Can't align: no codon mapping to residue "
+                + sourceDsPos + "(" + sourceChar + ")");
+        return;
+      }
+
+      int mappedCodonStart = mappedPos[0]; // position (1...) of codon start
+      int mappedCodonEnd = mappedPos[mappedPos.length - 1]; // codon end pos
+      StringBuilder trailingCopiedGap = new StringBuilder();
+
+      /*
+       * Copy dna sequence up to and including this codon. Optionally, include
+       * gaps before the codon starts (in introns) and/or after the codon starts
+       * (in exons).
+       * 
+       * Note this only works for 'linear' splicing, not reverse or interleaved.
+       * But then 'align dna as protein' doesn't make much sense otherwise.
+       */
+      int intronLength = 0;
+      while (basesWritten + toOffset < mappedCodonEnd
+              && thisSeqPos < thisSeq.length)
+      {
+        final char c = thisSeq[thisSeqPos++];
+        if (c != myGapChar)
+        {
+          basesWritten++;
+          int sourcePosition = basesWritten + toOffset;
+          if (sourcePosition < mappedCodonStart)
+          {
+            /*
+             * Found an unmapped (intron) base. First add in any preceding gaps
+             * (if wanted).
+             */
+            if (preserveUnmappedGaps && trailingCopiedGap.length() > 0)
+            {
+              thisAligned.append(trailingCopiedGap.toString());
+              intronLength += trailingCopiedGap.length();
+              trailingCopiedGap = new StringBuilder();
+            }
+            intronLength++;
+            inExon = false;
+          }
+          else
+          {
+            final boolean startOfCodon = sourcePosition == mappedCodonStart;
+            int gapsToAdd = calculateGapsToInsert(preserveMappedGaps,
+                    preserveUnmappedGaps, sourceGapMappedLength, inExon,
+                    trailingCopiedGap.length(), intronLength, startOfCodon);
+            for (int i = 0; i < gapsToAdd; i++)
+            {
+              thisAligned.append(myGapChar);
+            }
+            sourceGapMappedLength = 0;
+            inExon = true;
+          }
+          thisAligned.append(c);
+          trailingCopiedGap = new StringBuilder();
+        }
+        else
+        {
+          if (inExon && preserveMappedGaps)
+          {
+            trailingCopiedGap.append(myGapChar);
+          }
+          else if (!inExon && preserveUnmappedGaps)
+          {
+            trailingCopiedGap.append(myGapChar);
+          }
+        }
+      }
+    }
+
+    /*
+     * At end of protein sequence. Copy any remaining dna sequence, optionally
+     * including (intron) gaps. We do not copy trailing gaps in protein.
+     */
+    while (thisSeqPos < thisSeq.length)
+    {
+      final char c = thisSeq[thisSeqPos++];
+      if (c != myGapChar || preserveUnmappedGaps)
+      {
+        thisAligned.append(c);
+      }
+    }
+
+    /*
+     * All done aligning, set the aligned sequence.
+     */
+    alignTo.setSequence(new String(thisAligned));
+  }
+
+  /**
+   * Helper method to work out how many gaps to insert when realigning.
+   * 
+   * @param preserveMappedGaps
+   * @param preserveUnmappedGaps
+   * @param sourceGapMappedLength
+   * @param inExon
+   * @param trailingCopiedGap
+   * @param intronLength
+   * @param startOfCodon
+   * @return
+   */
+  protected static int calculateGapsToInsert(boolean preserveMappedGaps,
+          boolean preserveUnmappedGaps, int sourceGapMappedLength,
+          boolean inExon, int trailingGapLength, int intronLength,
+          final boolean startOfCodon)
+  {
+    int gapsToAdd = 0;
+    if (startOfCodon)
+    {
+      /*
+       * Reached start of codon. Ignore trailing gaps in intron unless we are
+       * preserving gaps in both exon and intron. Ignore them anyway if the
+       * protein alignment introduces a gap at least as large as the intronic
+       * region.
+       */
+      if (inExon && !preserveMappedGaps)
+      {
+        trailingGapLength = 0;
+      }
+      if (!inExon && !(preserveMappedGaps && preserveUnmappedGaps))
+      {
+        trailingGapLength = 0;
+      }
+      if (inExon)
+      {
+        gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
+      }
+      else
+      {
+        if (intronLength + trailingGapLength <= sourceGapMappedLength)
+        {
+          gapsToAdd = sourceGapMappedLength - intronLength;
+        }
+        else
+        {
+          gapsToAdd = Math.min(intronLength + trailingGapLength
+                  - sourceGapMappedLength, trailingGapLength);
+        }
+      }
+    }
+    else
+    {
+      /*
+       * second or third base of codon; check for any gaps in dna
+       */
+      if (!preserveMappedGaps)
+      {
+        trailingGapLength = 0;
+      }
+      gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
+    }
+    return gapsToAdd;
+  }
+
+  /**
+   * Returns a list of sequences mapped from the given sequences and aligned
+   * (gapped) in the same way. For example, the cDNA for aligned protein, where
+   * a single gap in protein generates three gaps in cDNA.
+   * 
+   * @param sequences
+   * @param gapCharacter
+   * @param mappings
+   * @return
+   */
+  public static List<SequenceI> getAlignedTranslation(
+          List<SequenceI> sequences, char gapCharacter,
+          Set<AlignedCodonFrame> mappings)
+  {
+    List<SequenceI> alignedSeqs = new ArrayList<SequenceI>();
+
+    for (SequenceI seq : sequences)
+    {
+      List<SequenceI> mapped = getAlignedTranslation(seq, gapCharacter,
+              mappings);
+      alignedSeqs.addAll(mapped);
+    }
+    return alignedSeqs;
+  }
+
+  /**
+   * Returns sequences aligned 'like' the source sequence, as mapped by the
+   * given mappings. Normally we expect zero or one 'mapped' sequences, but this
+   * will support 1-to-many as well.
+   * 
+   * @param seq
+   * @param gapCharacter
+   * @param mappings
+   * @return
+   */
+  protected static List<SequenceI> getAlignedTranslation(SequenceI seq,
+          char gapCharacter, Set<AlignedCodonFrame> mappings)
+  {
+    List<SequenceI> result = new ArrayList<SequenceI>();
+    for (AlignedCodonFrame mapping : mappings)
+    {
+      if (mapping.involvesSequence(seq))
+      {
+        SequenceI mapped = getAlignedTranslation(seq, gapCharacter, mapping);
+        if (mapped != null)
+        {
+          result.add(mapped);
+        }
+      }
+    }
+    return result;
+  }
+
+  /**
+   * Returns the translation of 'seq' (as held in the mapping) with
+   * corresponding alignment (gaps).
+   * 
+   * @param seq
+   * @param gapCharacter
+   * @param mapping
+   * @return
+   */
+  protected static SequenceI getAlignedTranslation(SequenceI seq,
+          char gapCharacter, AlignedCodonFrame mapping)
+  {
+    String gap = String.valueOf(gapCharacter);
+    boolean toDna = false;
+    int fromRatio = 1;
+    SequenceI mapTo = mapping.getDnaForAaSeq(seq);
+    if (mapTo != null)
+    {
+      // mapping is from protein to nucleotide
+      toDna = true;
+      // should ideally get gap count ratio from mapping
+      gap = String.valueOf(new char[] { gapCharacter, gapCharacter,
+          gapCharacter });
+    }
+    else
+    {
+      // mapping is from nucleotide to protein
+      mapTo = mapping.getAaForDnaSeq(seq);
+      fromRatio = 3;
+    }
+    StringBuilder newseq = new StringBuilder(seq.getLength()
+            * (toDna ? 3 : 1));
+
+    int residueNo = 0; // in seq, base 1
+    int[] phrase = new int[fromRatio];
+    int phraseOffset = 0;
+    int gapWidth = 0;
+    boolean first = true;
+    final Sequence alignedSeq = new Sequence("", "");
+
+    for (char c : seq.getSequence())
+    {
+      if (c == gapCharacter)
+      {
+        gapWidth++;
+        if (gapWidth >= fromRatio)
+        {
+          newseq.append(gap);
+          gapWidth = 0;
+        }
+      }
+      else
+      {
+        phrase[phraseOffset++] = residueNo + 1;
+        if (phraseOffset == fromRatio)
+        {
+          /*
+           * Have read a whole codon (or protein residue), now translate: map
+           * source phrase to positions in target sequence add characters at
+           * these positions to newseq Note mapping positions are base 1, our
+           * sequence positions base 0.
+           */
+          SearchResults sr = new SearchResults();
+          for (int pos : phrase)
+          {
+            mapping.markMappedRegion(seq, pos, sr);
+          }
+          newseq.append(sr.getCharacters());
+          if (first)
+          {
+            first = false;
+            // Hack: Copy sequence dataset, name and description from
+            // SearchResults.match[0].sequence
+            // TODO? carry over sequence names from original 'complement'
+            // alignment
+            SequenceI mappedTo = sr.getResultSequence(0);
+            alignedSeq.setName(mappedTo.getName());
+            alignedSeq.setDescription(mappedTo.getDescription());
+            alignedSeq.setDatasetSequence(mappedTo);
+          }
+          phraseOffset = 0;
+        }
+        residueNo++;
+      }
+    }
+    alignedSeq.setSequence(newseq.toString());
+    return alignedSeq;
+  }
+
+  /**
+   * Realigns the given protein to match the alignment of the dna, using codon
+   * mappings to translate aligned codon positions to protein residues.
+   * 
+   * @param protein
+   *          the alignment whose sequences are realigned by this method
+   * @param dna
+   *          the dna alignment whose alignment we are 'copying'
+   * @return the number of sequences that were realigned
+   */
+  public static int alignProteinAsDna(AlignmentI protein, AlignmentI dna)
+  {
+    List<SequenceI> unmappedProtein = new ArrayList<SequenceI>();
+    unmappedProtein.addAll(protein.getSequences());
+
+    Set<AlignedCodonFrame> mappings = protein.getCodonFrames();
+
+    /*
+     * Map will hold, for each aligned codon position e.g. [3, 5, 6], a map of
+     * {dnaSequence, {proteinSequence, codonProduct}} at that position. The
+     * comparator keeps the codon positions ordered.
+     */
+    Map<AlignedCodon, Map<SequenceI, String>> alignedCodons = new TreeMap<AlignedCodon, Map<SequenceI, String>>(
+            new CodonComparator());
+    for (SequenceI dnaSeq : dna.getSequences())
+    {
+      for (AlignedCodonFrame mapping : mappings)
+      {
+        Mapping seqMap = mapping.getMappingForSequence(dnaSeq);
+        SequenceI prot = mapping.findAlignedSequence(
+                dnaSeq.getDatasetSequence(), protein);
+        if (prot != null)
+        {
+          addCodonPositions(dnaSeq, prot, protein.getGapCharacter(),
+                  seqMap, alignedCodons);
+          unmappedProtein.remove(prot);
+        }
+      }
+    }
+    return alignProteinAs(protein, alignedCodons, unmappedProtein);
+  }
+
+  /**
+   * Update the aligned protein sequences to match the codon alignments given in
+   * the map.
+   * 
+   * @param protein
+   * @param alignedCodons
+   *          an ordered map of codon positions (columns), with sequence/peptide
+   *          values present in each column
+   * @param unmappedProtein
+   * @return
+   */
+  protected static int alignProteinAs(AlignmentI protein,
+          Map<AlignedCodon, Map<SequenceI, String>> alignedCodons,
+          List<SequenceI> unmappedProtein)
+  {
+    /*
+     * Prefill aligned sequences with gaps before inserting aligned protein
+     * residues.
+     */
+    int alignedWidth = alignedCodons.size();
+    char[] gaps = new char[alignedWidth];
+    Arrays.fill(gaps, protein.getGapCharacter());
+    String allGaps = String.valueOf(gaps);
+    for (SequenceI seq : protein.getSequences())
+    {
+      if (!unmappedProtein.contains(seq))
+      {
+        seq.setSequence(allGaps);
+      }
+    }
+
+    int column = 0;
+    for (AlignedCodon codon : alignedCodons.keySet())
+    {
+      final Map<SequenceI, String> columnResidues = alignedCodons
+              .get(codon);
+      for (Entry<SequenceI, String> entry : columnResidues.entrySet())
+      {
+        // place translated codon at its column position in sequence
+        entry.getKey().getSequence()[column] = entry.getValue().charAt(0);
+      }
+      column++;
+    }
+    return 0;
+  }
+
+  /**
+   * Populate the map of aligned codons by traversing the given sequence
+   * mapping, locating the aligned positions of mapped codons, and adding those
+   * positions and their translation products to the map.
+   * 
+   * @param dna
+   *          the aligned sequence we are mapping from
+   * @param protein
+   *          the sequence to be aligned to the codons
+   * @param gapChar
+   *          the gap character in the dna sequence
+   * @param seqMap
+   *          a mapping to a sequence translation
+   * @param alignedCodons
+   *          the map we are building up
+   */
+  static void addCodonPositions(SequenceI dna, SequenceI protein,
+          char gapChar, Mapping seqMap,
+          Map<AlignedCodon, Map<SequenceI, String>> alignedCodons)
+  {
+    Iterator<AlignedCodon> codons = seqMap.getCodonIterator(dna, gapChar);
+    while (codons.hasNext())
+    {
+      AlignedCodon codon = codons.next();
+      Map<SequenceI, String> seqProduct = alignedCodons.get(codon);
+      if (seqProduct == null)
+      {
+        seqProduct = new HashMap<SequenceI, String>();
+        alignedCodons.put(codon, seqProduct);
+      }
+      seqProduct.put(protein, codon.product);
+    }
+  }
+
+  /**
+   * Returns true if a cDNA/Protein mapping either exists, or could be made,
+   * between at least one pair of sequences in the two alignments. Currently,
+   * the logic is:
+   * <ul>
+   * <li>One alignment must be nucleotide, and the other protein</li>
+   * <li>At least one pair of sequences must be already mapped, or mappable</li>
+   * <li>Mappable means the nucleotide translation matches the protein sequence</li>
+   * <li>The translation may ignore start and stop codons if present in the
+   * nucleotide</li>
+   * </ul>
+   * 
+   * @param al1
+   * @param al2
+   * @return
+   */
+  public static boolean isMappable(AlignmentI al1, AlignmentI al2)
+  {
+    if (al1 == null || al2 == null)
+    {
+      return false;
+    }
+
+    /*
+     * Require one nucleotide and one protein
+     */
+    if (al1.isNucleotide() == al2.isNucleotide())
+    {
+      return false;
+    }
+    AlignmentI dna = al1.isNucleotide() ? al1 : al2;
+    AlignmentI protein = dna == al1 ? al2 : al1;
+    Set<AlignedCodonFrame> mappings = protein.getCodonFrames();
+    for (SequenceI dnaSeq : dna.getSequences())
+    {
+      for (SequenceI proteinSeq : protein.getSequences())
+      {
+        if (isMappable(dnaSeq, proteinSeq, mappings))
+        {
+          return true;
+        }
+      }
+    }
+    return false;
+  }
+
+  /**
+   * Returns true if the dna sequence is mapped, or could be mapped, to the
+   * protein sequence.
+   * 
+   * @param dnaSeq
+   * @param proteinSeq
+   * @param mappings
+   * @return
+   */
+  protected static boolean isMappable(SequenceI dnaSeq,
+          SequenceI proteinSeq, Set<AlignedCodonFrame> mappings)
+  {
+    if (dnaSeq == null || proteinSeq == null)
+    {
+      return false;
+    }
+
+    SequenceI dnaDs = dnaSeq.getDatasetSequence() == null ? dnaSeq : dnaSeq
+            .getDatasetSequence();
+    SequenceI proteinDs = proteinSeq.getDatasetSequence() == null ? proteinSeq
+            : proteinSeq.getDatasetSequence();
+
+    /*
+     * Already mapped?
+     */
+    for (AlignedCodonFrame mapping : mappings)
+    {
+      if (proteinDs == mapping.getAaForDnaSeq(dnaDs))
+      {
+        return true;
+      }
+    }
+
+    /*
+     * Just try to make a mapping (it is not yet stored), test whether
+     * successful.
+     */
+    return mapProteinSequenceToCdna(proteinDs, dnaDs) != null;
+  }
+
+  /**
+   * Finds any reference annotations associated with the sequences in
+   * sequenceScope, that are not already added to the alignment, and adds them
+   * to the 'candidates' map. Also populates a lookup table of annotation
+   * labels, keyed by calcId, for use in constructing tooltips or the like.
+   * 
+   * @param sequenceScope
+   *          the sequences to scan for reference annotations
+   * @param labelForCalcId
+   *          (optional) map to populate with label for calcId
+   * @param candidates
+   *          map to populate with annotations for sequence
+   * @param al
+   *          the alignment to check for presence of annotations
+   */
+  public static void findAddableReferenceAnnotations(
+          List<SequenceI> sequenceScope,
+          Map<String, String> labelForCalcId,
+          final Map<SequenceI, List<AlignmentAnnotation>> candidates,
+          AlignmentI al)
+  {
+    if (sequenceScope == null)
+    {
+      return;
+    }
+
+    /*
+     * For each sequence in scope, make a list of any annotations on the
+     * underlying dataset sequence which are not already on the alignment.
+     * 
+     * Add to a map of { alignmentSequence, <List of annotations to add> }
+     */
+    for (SequenceI seq : sequenceScope)
+    {
+      SequenceI dataset = seq.getDatasetSequence();
+      if (dataset == null)
+      {
+        continue;
+      }
+      AlignmentAnnotation[] datasetAnnotations = dataset.getAnnotation();
+      if (datasetAnnotations == null)
+      {
+        continue;
+      }
+      final List<AlignmentAnnotation> result = new ArrayList<AlignmentAnnotation>();
+      for (AlignmentAnnotation dsann : datasetAnnotations)
+      {
+        /*
+         * Find matching annotations on the alignment. If none is found, then
+         * add this annotation to the list of 'addable' annotations for this
+         * sequence.
+         */
+        final Iterable<AlignmentAnnotation> matchedAlignmentAnnotations = al
+                .findAnnotations(seq, dsann.getCalcId(), dsann.label);
+        if (!matchedAlignmentAnnotations.iterator().hasNext())
+        {
+          result.add(dsann);
+          if (labelForCalcId != null)
+          {
+            labelForCalcId.put(dsann.getCalcId(), dsann.label);
+          }
+        }
+      }
+      /*
+       * Save any addable annotations for this sequence
+       */
+      if (!result.isEmpty())
+      {
+        candidates.put(seq, result);
+      }
+    }
+  }
+
+  /**
+   * Adds annotations to the top of the alignment annotations, in the same order
+   * as their related sequences.
+   * 
+   * @param annotations
+   *          the annotations to add
+   * @param alignment
+   *          the alignment to add them to
+   * @param selectionGroup
+   *          current selection group (or null if none)
+   */
+  public static void addReferenceAnnotations(
+          Map<SequenceI, List<AlignmentAnnotation>> annotations,
+          final AlignmentI alignment, final SequenceGroup selectionGroup)
+  {
+    for (SequenceI seq : annotations.keySet())
+    {
+      for (AlignmentAnnotation ann : annotations.get(seq))
+      {
+        AlignmentAnnotation copyAnn = new AlignmentAnnotation(ann);
+        int startRes = 0;
+        int endRes = ann.annotations.length;
+        if (selectionGroup != null)
+        {
+          startRes = selectionGroup.getStartRes();
+          endRes = selectionGroup.getEndRes();
+        }
+        copyAnn.restrict(startRes, endRes);
+
+        /*
+         * Add to the sequence (sets copyAnn.datasetSequence), unless the
+         * original annotation is already on the sequence.
+         */
+        if (!seq.hasAnnotation(ann))
+        {
+          seq.addAlignmentAnnotation(copyAnn);
+        }
+        // adjust for gaps
+        copyAnn.adjustForAlignment();
+        // add to the alignment and set visible
+        alignment.addAnnotation(copyAnn);
+        copyAnn.visible = true;
+      }
+    }
+  }
+
+  /**
+   * Set visibility of alignment annotations of specified types (labels), for
+   * specified sequences. This supports controls like
+   * "Show all secondary structure", "Hide all Temp factor", etc.
+   * 
+   * @al the alignment to scan for annotations
+   * @param types
+   *          the types (labels) of annotations to be updated
+   * @param forSequences
+   *          if not null, only annotations linked to one of these sequences are
+   *          in scope for update; if null, acts on all sequence annotations
+   * @param anyType
+   *          if this flag is true, 'types' is ignored (label not checked)
+   * @param doShow
+   *          if true, set visibility on, else set off
+   */
+  public static void showOrHideSequenceAnnotations(AlignmentI al,
+          Collection<String> types, List<SequenceI> forSequences,
+          boolean anyType, boolean doShow)
+  {
+    for (AlignmentAnnotation aa : al.getAlignmentAnnotation())
+    {
+      if (anyType || types.contains(aa.label))
+      {
+        if ((aa.sequenceRef != null)
+                && (forSequences == null || forSequences
+                        .contains(aa.sequenceRef)))
+        {
+          aa.visible = doShow;
+        }
+      }
+    }
+  }
+
+  /**
+   * Returns true if either sequence has a cross-reference to the other
+   * 
+   * @param seq1
+   * @param seq2
+   * @return
+   */
+  public static boolean haveCrossRef(SequenceI seq1, SequenceI seq2)
+  {
+    // Note: moved here from class CrossRef as the latter class has dependencies
+    // not availability to the applet's classpath
+    return hasCrossRef(seq1, seq2) || hasCrossRef(seq2, seq1);
+  }
+
+  /**
+   * Returns true if seq1 has a cross-reference to seq2. Currently this assumes
+   * that sequence name is structured as Source|AccessionId.
+   * 
+   * @param seq1
+   * @param seq2
+   * @return
+   */
+  public static boolean hasCrossRef(SequenceI seq1, SequenceI seq2)
+  {
+    if (seq1 == null || seq2 == null)
+    {
+      return false;
+    }
+    String name = seq2.getName();
+    final DBRefEntry[] xrefs = seq1.getDBRef();
+    if (xrefs != null)
+    {
+      for (DBRefEntry xref : xrefs)
+      {
+        String xrefName = xref.getSource() + "|" + xref.getAccessionId();
+        // case-insensitive test, consistent with DBRefEntry.equalRef()
+        if (xrefName.equalsIgnoreCase(name))
+        {
+          return true;
+        }
+      }
+    }
+    return false;
+  }
+
+  /**
+   * Constructs an alignment consisting of the mapped exon regions in the given
+   * nucleotide sequences, and updates mappings to match.
+   * 
+   * @param dna
+   *          aligned dna sequences
+   * @param mappings
+   *          from dna to protein; these are replaced with new mappings
+   * @return an alignment whose sequences are the exon-only parts of the dna
+   *         sequences (or null if no exons are found)
+   */
+  public static AlignmentI makeExonAlignment(SequenceI[] dna,
+          Set<AlignedCodonFrame> mappings)
+  {
+    Set<AlignedCodonFrame> newMappings = new LinkedHashSet<AlignedCodonFrame>();
+    List<SequenceI> exonSequences = new ArrayList<SequenceI>();
+
+    for (SequenceI dnaSeq : dna)
+    {
+      final SequenceI ds = dnaSeq.getDatasetSequence();
+      List<AlignedCodonFrame> seqMappings = MappingUtils
+              .findMappingsForSequence(ds, mappings);
+      for (AlignedCodonFrame acf : seqMappings)
+      {
+        AlignedCodonFrame newMapping = new AlignedCodonFrame();
+        final List<SequenceI> mappedExons = makeExonSequences(ds, acf,
+                newMapping);
+        if (!mappedExons.isEmpty())
+        {
+          exonSequences.addAll(mappedExons);
+          newMappings.add(newMapping);
+        }
+      }
+    }
+    AlignmentI al = new Alignment(
+            exonSequences.toArray(new SequenceI[exonSequences.size()]));
+    al.setDataset(null);
+
+    /*
+     * Replace the old mappings with the new ones
+     */
+    mappings.clear();
+    mappings.addAll(newMappings);
+
+    return al;
+  }
+
+  /**
+   * Helper method to make exon-only sequences and populate their mappings to
+   * protein products
+   * <p>
+   * For example, if ggCCaTTcGAg has mappings [3, 4, 6, 7, 9, 10] to protein
+   * then generate a sequence CCTTGA with mapping [1, 6] to the same protein
+   * residues
+   * <p>
+   * Typically eukaryotic dna will include exons encoding for a single peptide
+   * sequence i.e. return a single result. Bacterial dna may have overlapping
+   * exon mappings coding for multiple peptides so return multiple results
+   * (example EMBL KF591215).
+   * 
+   * @param dnaSeq
+   *          a dna dataset sequence
+   * @param mapping
+   *          containing one or more mappings of the sequence to protein
+   * @param newMapping
+   *          the new mapping to populate, from the exon-only sequences to their
+   *          mapped protein sequences
+   * @return
+   */
+  protected static List<SequenceI> makeExonSequences(SequenceI dnaSeq,
+          AlignedCodonFrame mapping, AlignedCodonFrame newMapping)
+  {
+    List<SequenceI> exonSequences = new ArrayList<SequenceI>();
+    List<Mapping> seqMappings = mapping.getMappingsForSequence(dnaSeq);
+    final char[] dna = dnaSeq.getSequence();
+    for (Mapping seqMapping : seqMappings)
+    {
+      StringBuilder newSequence = new StringBuilder(dnaSeq.getLength());
+
+      /*
+       * Get the codon regions as { [2, 5], [7, 12], [14, 14] etc }
+       */
+      final List<int[]> dnaExonRanges = seqMapping.getMap().getFromRanges();
+      for (int[] range : dnaExonRanges)
+      {
+        for (int pos = range[0]; pos <= range[1]; pos++)
+        {
+          newSequence.append(dna[pos - 1]);
+        }
+      }
+
+      SequenceI exon = new Sequence(dnaSeq.getName(),
+              newSequence.toString());
+
+      /*
+       * Locate any xrefs to CDS database on the protein product and attach to
+       * the CDS sequence. Also add as a sub-token of the sequence name.
+       */
+      // default to "CDS" if we can't locate an actual gene id
+      String cdsAccId = FeatureProperties
+              .getCodingFeature(DBRefSource.EMBL);
+      DBRefEntry[] cdsRefs = DBRefUtils.selectRefs(seqMapping.getTo()
+              .getDBRef(), DBRefSource.CODINGDBS);
+      if (cdsRefs != null)
+      {
+        for (DBRefEntry cdsRef : cdsRefs)
+        {
+          exon.addDBRef(new DBRefEntry(cdsRef));
+          cdsAccId = cdsRef.getAccessionId();
+        }
+      }
+      exon.setName(exon.getName() + "|" + cdsAccId);
+      exon.createDatasetSequence();
+
+      /*
+       * Build new mappings - from the same protein regions, but now to
+       * contiguous exons
+       */
+      List<int[]> exonRange = new ArrayList<int[]>();
+      exonRange.add(new int[] { 1, newSequence.length() });
+      MapList map = new MapList(exonRange, seqMapping.getMap()
+              .getToRanges(), 3, 1);
+      newMapping.addMap(exon.getDatasetSequence(), seqMapping.getTo(), map);
+      MapList cdsToDnaMap = new MapList(dnaExonRanges, exonRange, 1, 1);
+      newMapping.addMap(dnaSeq, exon.getDatasetSequence(), cdsToDnaMap);
+
+      exonSequences.add(exon);
+    }
+    return exonSequences;
+  }
 }