JAL-3032 adds Java 8 functionality (2/2)
[jalview.git] / src2 / fr / orsay / lri / varna / models / geom / CubicBezierCurve.java
diff --git a/src2/fr/orsay/lri/varna/models/geom/CubicBezierCurve.java b/src2/fr/orsay/lri/varna/models/geom/CubicBezierCurve.java
new file mode 100644 (file)
index 0000000..7ff9aaf
--- /dev/null
@@ -0,0 +1,205 @@
+package fr.orsay.lri.varna.models.geom;
+
+
+import java.awt.geom.Point2D;
+
+/**
+ * This class implements a cubic Bezier curve
+ * with a constant speed parametrization.
+ * The Bezier curve is approximated by a sequence of n straight lines,
+ * where the n+1 points between the lines are
+ * { B(k/n), k=0,1,...,n } where B is the standard
+ * parametrization given here:
+ * http://en.wikipedia.org/wiki/Bezier_curve#Cubic_B.C3.A9zier_curves
+ * You can then use the constant speed parametrization over this sequence
+ * of straight lines.
+ * 
+ * @author Raphael Champeimont
+ */
+public class CubicBezierCurve {
+       
+       /**
+        * The four points defining the curve.
+        */
+       private Point2D.Double P0, P1, P2, P3;
+       
+
+       
+       private int n;
+       /**
+        * The number of lines approximating the Bezier curve.
+        */
+       public int getN() {
+               return n;
+       }
+       
+       
+       /**
+        * Get the (exact) length of the approximation curve.
+        */
+       public double getApproxCurveLength() {
+               return lengths[n-1];
+       }
+       
+       
+       
+       /**
+        * The n+1 points between the n lines.
+        */
+       private Point2D.Double[] points;
+       
+       
+       
+       /**
+        * Array of length n.
+        * lengths[i] is the sum of lengths of lines up to and including the
+        * line starting at point points[i]. 
+        */
+       private double[] lengths;
+       
+       
+       /**
+        * Array of length n.
+        * The vectors along each line, with a norm of 1.
+        */
+       private Point2D.Double[] unitVectors; 
+       
+       
+       
+       /**
+        * The standard exact cubic Bezier curve parametrization.
+        * Argument t must be in [0,1].
+        */
+       public Point2D.Double standardParam(double t) {
+               double x = Math.pow(1-t,3) * P0.x
+                 + 3 * Math.pow(1-t,2) * t * P1.x
+                 + 3 * (1-t) * t * t * P2.x
+                 + t * t * t * P3.x;
+               double y = Math.pow(1-t,3) * P0.y
+                 + 3 * Math.pow(1-t,2) * t * P1.y
+                 + 3 * (1-t) * t * t * P2.y
+                 + t * t * t * P3.y;
+               return new Point2D.Double(x, y);
+       }
+       
+       
+       
+
+       
+       /**
+        * Uniform approximated parameterization.
+        * A value in t must be in [0, getApproxCurveLength()].
+        * We have built a function f such that f(t) is the position of
+        * the point on the approximation curve (n straight lines).
+        * The interesting property is that the length of the curve
+        * { f(t), t in [0,l] } is exactly l.
+        * The java function is simply the application of f over each element
+        * of a sorted array, ie. uniformParam(t)[k] = f(t[k]).
+        * Computation time is O(n+m) where n is the number of lines in which
+        * the curve is divided and m is the length of the array given as an
+        * argument. The use of a sorted array instead of m calls to the
+        * function enables us to have a complexity of O(n+m) instead of O(n*m)
+        * because we don't need to search in all the n possible lines for
+        * each value in t (as we know their are in increasing order).
+        */
+       public Point2D.Double[] uniformParam(double[] t) {
+               int m = t.length;
+               Point2D.Double[] result = new Point2D.Double[m];
+               int line = 0;
+               for (int i=0; i<m; i++) {
+                       while ((line<n) && (lengths[line] < t[i])) {
+                               line++;
+                       }
+                       if (line >= n) {
+                               // In theory should not happen, but float computation != math.
+                               line = n-1;
+                       }
+                       if (t[i] < 0) {
+                               throw (new IllegalArgumentException("t[" + i + "] < 0"));
+                       }
+                       // So now we know on which line we are
+                       double lengthOnLine = t[i] - (line != 0 ? lengths[line-1] : 0);
+                       double x = points[line].x + unitVectors[line].x * lengthOnLine;
+                       double y = points[line].y + unitVectors[line].y * lengthOnLine;
+                       result[i] = new Point2D.Double(x, y);
+               }
+               return result;
+       }
+       
+       
+       
+       /**
+        * A Bezier curve can be defined by four points,
+        * see http://en.wikipedia.org/wiki/Bezier_curve#Cubic_B.C3.A9zier_curves
+        * Here we give this four points and a integer to say in how many
+        * line segments we want to cut the Bezier curve (if n is bigger 
+        * the computation takes longer but the precision is better).
+        * The number of lines must be at least 1.
+        */
+       public CubicBezierCurve(
+                       Point2D.Double P0,
+                       Point2D.Double P1,
+                       Point2D.Double P2,
+                       Point2D.Double P3,
+                       int n) {
+               this.P0 = P0;
+               this.P1 = P1;
+               this.P2 = P2;
+               this.P3 = P3;
+               this.n = n;
+               if (n < 1) {
+                       throw (new IllegalArgumentException("n must be at least 1"));
+               }
+               computeData();
+       }
+
+       
+       private void computeData() {
+               points = new Point2D.Double[n+1];
+               for (int k=0; k<=n; k++) {
+                       points[k] = standardParam(((double) k) / n);
+               }
+               
+               lengths = new double[n];
+               unitVectors = new Point2D.Double[n];
+               double sum = 0;
+               for (int i=0; i<n; i++) {
+                       double l = lineLength(points[i], points[i+1]);
+                       double dx = (points[i+1].x - points[i].x) / l;
+                       double dy = (points[i+1].y - points[i].y) / l;
+                       unitVectors[i] = new Point2D.Double(dx, dy);
+                       sum += l;
+                       lengths[i] = sum;
+               }
+               
+
+               
+       }
+       
+       
+       private double lineLength(Point2D.Double P1, Point2D.Double P2) {
+               return P2.distance(P1);
+       }
+       
+       
+       public Point2D.Double getP0() {
+               return P0;
+       }
+
+       public Point2D.Double getP1() {
+               return P1;
+       }
+
+       public Point2D.Double getP2() {
+               return P2;
+       }
+
+       public Point2D.Double getP3() {
+               return P3;
+       }
+
+
+
+
+       
+}