2 * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3 * Copyright (C) $$Year-Rel$$ The Jalview Authors
5 * This file is part of Jalview.
7 * Jalview is free software: you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation, either version 3
10 * of the License, or (at your option) any later version.
12 * Jalview is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR
15 * PURPOSE. See the GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with Jalview. If not, see <http://www.gnu.org/licenses/>.
19 * The Jalview Authors are detailed in the 'AUTHORS' file.
21 package jalview.analysis;
23 import static jalview.io.gff.GffConstants.CLINICAL_SIGNIFICANCE;
25 import jalview.datamodel.AlignedCodon;
26 import jalview.datamodel.AlignedCodonFrame;
27 import jalview.datamodel.AlignedCodonFrame.SequenceToSequenceMapping;
28 import jalview.datamodel.Alignment;
29 import jalview.datamodel.AlignmentAnnotation;
30 import jalview.datamodel.AlignmentI;
31 import jalview.datamodel.DBRefEntry;
32 import jalview.datamodel.IncompleteCodonException;
33 import jalview.datamodel.Mapping;
34 import jalview.datamodel.Sequence;
35 import jalview.datamodel.SequenceFeature;
36 import jalview.datamodel.SequenceGroup;
37 import jalview.datamodel.SequenceI;
38 import jalview.datamodel.features.SequenceFeatures;
39 import jalview.io.gff.SequenceOntologyI;
40 import jalview.schemes.ResidueProperties;
41 import jalview.util.Comparison;
42 import jalview.util.DBRefUtils;
43 import jalview.util.IntRangeComparator;
44 import jalview.util.MapList;
45 import jalview.util.MappingUtils;
46 import jalview.util.StringUtils;
48 import java.io.UnsupportedEncodingException;
49 import java.net.URLEncoder;
50 import java.util.ArrayList;
51 import java.util.Arrays;
52 import java.util.Collection;
53 import java.util.Collections;
54 import java.util.HashMap;
55 import java.util.HashSet;
56 import java.util.Iterator;
57 import java.util.LinkedHashMap;
58 import java.util.List;
60 import java.util.Map.Entry;
61 import java.util.NoSuchElementException;
63 import java.util.SortedMap;
64 import java.util.TreeMap;
67 * grab bag of useful alignment manipulation operations Expect these to be
68 * refactored elsewhere at some point.
73 public class AlignmentUtils
76 private static final int CODON_LENGTH = 3;
78 private static final String SEQUENCE_VARIANT = "sequence_variant:";
80 private static final String ID = "ID";
83 * A data model to hold the 'normal' base value at a position, and an optional
84 * sequence variant feature
86 static final class DnaVariant
90 SequenceFeature variant;
92 DnaVariant(String nuc)
98 DnaVariant(String nuc, SequenceFeature var)
104 public String getSource()
106 return variant == null ? null : variant.getFeatureGroup();
111 * given an existing alignment, create a new alignment including all, or up to
112 * flankSize additional symbols from each sequence's dataset sequence
118 public static AlignmentI expandContext(AlignmentI core, int flankSize)
120 List<SequenceI> sq = new ArrayList<SequenceI>();
122 for (SequenceI s : core.getSequences())
124 SequenceI newSeq = s.deriveSequence();
125 final int newSeqStart = newSeq.getStart() - 1;
126 if (newSeqStart > maxoffset
127 && newSeq.getDatasetSequence().getStart() < s.getStart())
129 maxoffset = newSeqStart;
135 maxoffset = Math.min(maxoffset, flankSize);
139 * now add offset left and right to create an expanded alignment
141 for (SequenceI s : sq)
144 while (ds.getDatasetSequence() != null)
146 ds = ds.getDatasetSequence();
148 int s_end = s.findPosition(s.getStart() + s.getLength());
149 // find available flanking residues for sequence
150 int ustream_ds = s.getStart() - ds.getStart();
151 int dstream_ds = ds.getEnd() - s_end;
153 // build new flanked sequence
155 // compute gap padding to start of flanking sequence
156 int offset = maxoffset - ustream_ds;
158 // padding is gapChar x ( maxoffset - min(ustream_ds, flank)
161 if (flankSize < ustream_ds)
163 // take up to flankSize residues
164 offset = maxoffset - flankSize;
165 ustream_ds = flankSize;
167 if (flankSize <= dstream_ds)
169 dstream_ds = flankSize - 1;
172 // TODO use Character.toLowerCase to avoid creating String objects?
173 char[] upstream = new String(ds
174 .getSequence(s.getStart() - 1 - ustream_ds, s.getStart() - 1))
175 .toLowerCase().toCharArray();
176 char[] downstream = new String(
177 ds.getSequence(s_end - 1, s_end + dstream_ds)).toLowerCase()
179 char[] coreseq = s.getSequence();
180 char[] nseq = new char[offset + upstream.length + downstream.length
182 char c = core.getGapCharacter();
185 for (; p < offset; p++)
190 System.arraycopy(upstream, 0, nseq, p, upstream.length);
191 System.arraycopy(coreseq, 0, nseq, p + upstream.length,
193 System.arraycopy(downstream, 0, nseq,
194 p + coreseq.length + upstream.length, downstream.length);
195 s.setSequence(new String(nseq));
196 s.setStart(s.getStart() - ustream_ds);
197 s.setEnd(s_end + downstream.length);
199 AlignmentI newAl = new jalview.datamodel.Alignment(
200 sq.toArray(new SequenceI[0]));
201 for (SequenceI s : sq)
203 if (s.getAnnotation() != null)
205 for (AlignmentAnnotation aa : s.getAnnotation())
207 aa.adjustForAlignment(); // JAL-1712 fix
208 newAl.addAnnotation(aa);
212 newAl.setDataset(core.getDataset());
217 * Returns the index (zero-based position) of a sequence in an alignment, or
224 public static int getSequenceIndex(AlignmentI al, SequenceI seq)
228 for (SequenceI alSeq : al.getSequences())
241 * Returns a map of lists of sequences in the alignment, keyed by sequence
242 * name. For use in mapping between different alignment views of the same
245 * @see jalview.datamodel.AlignmentI#getSequencesByName()
247 public static Map<String, List<SequenceI>> getSequencesByName(
250 Map<String, List<SequenceI>> theMap = new LinkedHashMap<String, List<SequenceI>>();
251 for (SequenceI seq : al.getSequences())
253 String name = seq.getName();
256 List<SequenceI> seqs = theMap.get(name);
259 seqs = new ArrayList<SequenceI>();
260 theMap.put(name, seqs);
269 * Build mapping of protein to cDNA alignment. Mappings are made between
270 * sequences where the cDNA translates to the protein sequence. Any new
271 * mappings are added to the protein alignment. Returns true if any mappings
272 * either already exist or were added, else false.
274 * @param proteinAlignment
275 * @param cdnaAlignment
278 public static boolean mapProteinAlignmentToCdna(
279 final AlignmentI proteinAlignment, final AlignmentI cdnaAlignment)
281 if (proteinAlignment == null || cdnaAlignment == null)
286 Set<SequenceI> mappedDna = new HashSet<SequenceI>();
287 Set<SequenceI> mappedProtein = new HashSet<SequenceI>();
290 * First pass - map sequences where cross-references exist. This include
291 * 1-to-many mappings to support, for example, variant cDNA.
293 boolean mappingPerformed = mapProteinToCdna(proteinAlignment,
294 cdnaAlignment, mappedDna, mappedProtein, true);
297 * Second pass - map sequences where no cross-references exist. This only
298 * does 1-to-1 mappings and assumes corresponding sequences are in the same
299 * order in the alignments.
301 mappingPerformed |= mapProteinToCdna(proteinAlignment, cdnaAlignment,
302 mappedDna, mappedProtein, false);
303 return mappingPerformed;
307 * Make mappings between compatible sequences (where the cDNA translation
308 * matches the protein).
310 * @param proteinAlignment
311 * @param cdnaAlignment
313 * a set of mapped DNA sequences (to add to)
314 * @param mappedProtein
315 * a set of mapped Protein sequences (to add to)
317 * if true, only map sequences where xrefs exist
320 protected static boolean mapProteinToCdna(
321 final AlignmentI proteinAlignment, final AlignmentI cdnaAlignment,
322 Set<SequenceI> mappedDna, Set<SequenceI> mappedProtein,
325 boolean mappingExistsOrAdded = false;
326 List<SequenceI> thisSeqs = proteinAlignment.getSequences();
327 for (SequenceI aaSeq : thisSeqs)
329 boolean proteinMapped = false;
330 AlignedCodonFrame acf = new AlignedCodonFrame();
332 for (SequenceI cdnaSeq : cdnaAlignment.getSequences())
335 * Always try to map if sequences have xref to each other; this supports
336 * variant cDNA or alternative splicing for a protein sequence.
338 * If no xrefs, try to map progressively, assuming that alignments have
339 * mappable sequences in corresponding order. These are not
340 * many-to-many, as that would risk mixing species with similar cDNA
343 if (xrefsOnly && !AlignmentUtils.haveCrossRef(aaSeq, cdnaSeq))
349 * Don't map non-xrefd sequences more than once each. This heuristic
350 * allows us to pair up similar sequences in ordered alignments.
352 if (!xrefsOnly && (mappedProtein.contains(aaSeq)
353 || mappedDna.contains(cdnaSeq)))
357 if (mappingExists(proteinAlignment.getCodonFrames(),
358 aaSeq.getDatasetSequence(), cdnaSeq.getDatasetSequence()))
360 mappingExistsOrAdded = true;
364 MapList map = mapCdnaToProtein(aaSeq, cdnaSeq);
367 acf.addMap(cdnaSeq, aaSeq, map);
368 mappingExistsOrAdded = true;
369 proteinMapped = true;
370 mappedDna.add(cdnaSeq);
371 mappedProtein.add(aaSeq);
377 proteinAlignment.addCodonFrame(acf);
380 return mappingExistsOrAdded;
384 * Answers true if the mappings include one between the given (dataset)
387 public static boolean mappingExists(List<AlignedCodonFrame> mappings,
388 SequenceI aaSeq, SequenceI cdnaSeq)
390 if (mappings != null)
392 for (AlignedCodonFrame acf : mappings)
394 if (cdnaSeq == acf.getDnaForAaSeq(aaSeq))
404 * Builds a mapping (if possible) of a cDNA to a protein sequence.
406 * <li>first checks if the cdna translates exactly to the protein
408 * <li>else checks for translation after removing a STOP codon</li>
409 * <li>else checks for translation after removing a START codon</li>
410 * <li>if that fails, inspect CDS features on the cDNA sequence</li>
412 * Returns null if no mapping is determined.
415 * the aligned protein sequence
417 * the aligned cdna sequence
420 public static MapList mapCdnaToProtein(SequenceI proteinSeq,
424 * Here we handle either dataset sequence set (desktop) or absent (applet).
425 * Use only the char[] form of the sequence to avoid creating possibly large
428 final SequenceI proteinDataset = proteinSeq.getDatasetSequence();
429 char[] aaSeqChars = proteinDataset != null
430 ? proteinDataset.getSequence()
431 : proteinSeq.getSequence();
432 final SequenceI cdnaDataset = cdnaSeq.getDatasetSequence();
433 char[] cdnaSeqChars = cdnaDataset != null ? cdnaDataset.getSequence()
434 : cdnaSeq.getSequence();
435 if (aaSeqChars == null || cdnaSeqChars == null)
441 * cdnaStart/End, proteinStartEnd are base 1 (for dataset sequence mapping)
443 final int mappedLength = CODON_LENGTH * aaSeqChars.length;
444 int cdnaLength = cdnaSeqChars.length;
445 int cdnaStart = cdnaSeq.getStart();
446 int cdnaEnd = cdnaSeq.getEnd();
447 final int proteinStart = proteinSeq.getStart();
448 final int proteinEnd = proteinSeq.getEnd();
451 * If lengths don't match, try ignoring stop codon (if present)
453 if (cdnaLength != mappedLength && cdnaLength > 2)
455 String lastCodon = String.valueOf(cdnaSeqChars,
456 cdnaLength - CODON_LENGTH, CODON_LENGTH).toUpperCase();
457 for (String stop : ResidueProperties.STOP)
459 if (lastCodon.equals(stop))
461 cdnaEnd -= CODON_LENGTH;
462 cdnaLength -= CODON_LENGTH;
469 * If lengths still don't match, try ignoring start codon.
472 if (cdnaLength != mappedLength && cdnaLength > 2
473 && String.valueOf(cdnaSeqChars, 0, CODON_LENGTH).toUpperCase()
474 .equals(ResidueProperties.START))
476 startOffset += CODON_LENGTH;
477 cdnaStart += CODON_LENGTH;
478 cdnaLength -= CODON_LENGTH;
481 if (translatesAs(cdnaSeqChars, startOffset, aaSeqChars))
484 * protein is translation of dna (+/- start/stop codons)
486 MapList map = new MapList(new int[] { cdnaStart, cdnaEnd },
488 { proteinStart, proteinEnd }, CODON_LENGTH, 1);
493 * translation failed - try mapping CDS annotated regions of dna
495 return mapCdsToProtein(cdnaSeq, proteinSeq);
499 * Test whether the given cdna sequence, starting at the given offset,
500 * translates to the given amino acid sequence, using the standard translation
501 * table. Designed to fail fast i.e. as soon as a mismatch position is found.
503 * @param cdnaSeqChars
508 protected static boolean translatesAs(char[] cdnaSeqChars, int cdnaStart,
511 if (cdnaSeqChars == null || aaSeqChars == null)
517 int dnaPos = cdnaStart;
518 for (; dnaPos < cdnaSeqChars.length - 2
519 && aaPos < aaSeqChars.length; dnaPos += CODON_LENGTH, aaPos++)
521 String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH);
522 final String translated = ResidueProperties.codonTranslate(codon);
525 * allow * in protein to match untranslatable in dna
527 final char aaRes = aaSeqChars[aaPos];
528 if ((translated == null || "STOP".equals(translated)) && aaRes == '*')
532 if (translated == null || !(aaRes == translated.charAt(0)))
535 // System.out.println(("Mismatch at " + i + "/" + aaResidue + ": "
536 // + codon + "(" + translated + ") != " + aaRes));
542 * check we matched all of the protein sequence
544 if (aaPos != aaSeqChars.length)
550 * check we matched all of the dna except
551 * for optional trailing STOP codon
553 if (dnaPos == cdnaSeqChars.length)
557 if (dnaPos == cdnaSeqChars.length - CODON_LENGTH)
559 String codon = String.valueOf(cdnaSeqChars, dnaPos, CODON_LENGTH);
560 if ("STOP".equals(ResidueProperties.codonTranslate(codon)))
569 * Align sequence 'seq' to match the alignment of a mapped sequence. Note this
570 * currently assumes that we are aligning cDNA to match protein.
573 * the sequence to be realigned
575 * the alignment whose sequence alignment is to be 'copied'
577 * character string represent a gap in the realigned sequence
578 * @param preserveUnmappedGaps
579 * @param preserveMappedGaps
580 * @return true if the sequence was realigned, false if it could not be
582 public static boolean alignSequenceAs(SequenceI seq, AlignmentI al,
583 String gap, boolean preserveMappedGaps,
584 boolean preserveUnmappedGaps)
587 * Get any mappings from the source alignment to the target (dataset)
590 // TODO there may be one AlignedCodonFrame per dataset sequence, or one with
591 // all mappings. Would it help to constrain this?
592 List<AlignedCodonFrame> mappings = al.getCodonFrame(seq);
593 if (mappings == null || mappings.isEmpty())
599 * Locate the aligned source sequence whose dataset sequence is mapped. We
600 * just take the first match here (as we can't align like more than one
603 SequenceI alignFrom = null;
604 AlignedCodonFrame mapping = null;
605 for (AlignedCodonFrame mp : mappings)
607 alignFrom = mp.findAlignedSequence(seq, al);
608 if (alignFrom != null)
615 if (alignFrom == null)
619 alignSequenceAs(seq, alignFrom, mapping, gap, al.getGapCharacter(),
620 preserveMappedGaps, preserveUnmappedGaps);
625 * Align sequence 'alignTo' the same way as 'alignFrom', using the mapping to
626 * match residues and codons. Flags control whether existing gaps in unmapped
627 * (intron) and mapped (exon) regions are preserved or not. Gaps between
628 * intron and exon are only retained if both flags are set.
635 * @param preserveUnmappedGaps
636 * @param preserveMappedGaps
638 public static void alignSequenceAs(SequenceI alignTo, SequenceI alignFrom,
639 AlignedCodonFrame mapping, String myGap, char sourceGap,
640 boolean preserveMappedGaps, boolean preserveUnmappedGaps)
642 // TODO generalise to work for Protein-Protein, dna-dna, dna-protein
644 // aligned and dataset sequence positions, all base zero
648 int basesWritten = 0;
649 char myGapChar = myGap.charAt(0);
650 int ratio = myGap.length();
652 int fromOffset = alignFrom.getStart() - 1;
653 int toOffset = alignTo.getStart() - 1;
654 int sourceGapMappedLength = 0;
655 boolean inExon = false;
656 final int toLength = alignTo.getLength();
657 final int fromLength = alignFrom.getLength();
658 StringBuilder thisAligned = new StringBuilder(2 * toLength);
661 * Traverse the 'model' aligned sequence
663 for (int i = 0; i < fromLength; i++)
665 char sourceChar = alignFrom.getCharAt(i);
666 if (sourceChar == sourceGap)
668 sourceGapMappedLength += ratio;
673 * Found a non-gap character. Locate its mapped region if any.
676 // Note mapping positions are base 1, our sequence positions base 0
677 int[] mappedPos = mapping.getMappedRegion(alignTo, alignFrom,
678 sourceDsPos + fromOffset);
679 if (mappedPos == null)
682 * unmapped position; treat like a gap
684 sourceGapMappedLength += ratio;
685 // System.err.println("Can't align: no codon mapping to residue "
686 // + sourceDsPos + "(" + sourceChar + ")");
691 int mappedCodonStart = mappedPos[0]; // position (1...) of codon start
692 int mappedCodonEnd = mappedPos[mappedPos.length - 1]; // codon end pos
693 StringBuilder trailingCopiedGap = new StringBuilder();
696 * Copy dna sequence up to and including this codon. Optionally, include
697 * gaps before the codon starts (in introns) and/or after the codon starts
700 * Note this only works for 'linear' splicing, not reverse or interleaved.
701 * But then 'align dna as protein' doesn't make much sense otherwise.
703 int intronLength = 0;
704 while (basesWritten + toOffset < mappedCodonEnd
705 && thisSeqPos < toLength)
707 final char c = alignTo.getCharAt(thisSeqPos++);
711 int sourcePosition = basesWritten + toOffset;
712 if (sourcePosition < mappedCodonStart)
715 * Found an unmapped (intron) base. First add in any preceding gaps
718 if (preserveUnmappedGaps && trailingCopiedGap.length() > 0)
720 thisAligned.append(trailingCopiedGap.toString());
721 intronLength += trailingCopiedGap.length();
722 trailingCopiedGap = new StringBuilder();
729 final boolean startOfCodon = sourcePosition == mappedCodonStart;
730 int gapsToAdd = calculateGapsToInsert(preserveMappedGaps,
731 preserveUnmappedGaps, sourceGapMappedLength, inExon,
732 trailingCopiedGap.length(), intronLength, startOfCodon);
733 for (int k = 0; k < gapsToAdd; k++)
735 thisAligned.append(myGapChar);
737 sourceGapMappedLength = 0;
740 thisAligned.append(c);
741 trailingCopiedGap = new StringBuilder();
745 if (inExon && preserveMappedGaps)
747 trailingCopiedGap.append(myGapChar);
749 else if (!inExon && preserveUnmappedGaps)
751 trailingCopiedGap.append(myGapChar);
758 * At end of model aligned sequence. Copy any remaining target sequence, optionally
759 * including (intron) gaps.
761 while (thisSeqPos < toLength)
763 final char c = alignTo.getCharAt(thisSeqPos++);
764 if (c != myGapChar || preserveUnmappedGaps)
766 thisAligned.append(c);
768 sourceGapMappedLength--;
772 * finally add gaps to pad for any trailing source gaps or
773 * unmapped characters
775 if (preserveUnmappedGaps)
777 while (sourceGapMappedLength > 0)
779 thisAligned.append(myGapChar);
780 sourceGapMappedLength--;
785 * All done aligning, set the aligned sequence.
787 alignTo.setSequence(new String(thisAligned));
791 * Helper method to work out how many gaps to insert when realigning.
793 * @param preserveMappedGaps
794 * @param preserveUnmappedGaps
795 * @param sourceGapMappedLength
797 * @param trailingCopiedGap
798 * @param intronLength
799 * @param startOfCodon
802 protected static int calculateGapsToInsert(boolean preserveMappedGaps,
803 boolean preserveUnmappedGaps, int sourceGapMappedLength,
804 boolean inExon, int trailingGapLength, int intronLength,
805 final boolean startOfCodon)
811 * Reached start of codon. Ignore trailing gaps in intron unless we are
812 * preserving gaps in both exon and intron. Ignore them anyway if the
813 * protein alignment introduces a gap at least as large as the intronic
816 if (inExon && !preserveMappedGaps)
818 trailingGapLength = 0;
820 if (!inExon && !(preserveMappedGaps && preserveUnmappedGaps))
822 trailingGapLength = 0;
826 gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
830 if (intronLength + trailingGapLength <= sourceGapMappedLength)
832 gapsToAdd = sourceGapMappedLength - intronLength;
836 gapsToAdd = Math.min(
837 intronLength + trailingGapLength - sourceGapMappedLength,
845 * second or third base of codon; check for any gaps in dna
847 if (!preserveMappedGaps)
849 trailingGapLength = 0;
851 gapsToAdd = Math.max(sourceGapMappedLength, trailingGapLength);
857 * Realigns the given protein to match the alignment of the dna, using codon
858 * mappings to translate aligned codon positions to protein residues.
861 * the alignment whose sequences are realigned by this method
863 * the dna alignment whose alignment we are 'copying'
864 * @return the number of sequences that were realigned
866 public static int alignProteinAsDna(AlignmentI protein, AlignmentI dna)
868 if (protein.isNucleotide() || !dna.isNucleotide())
870 System.err.println("Wrong alignment type in alignProteinAsDna");
873 List<SequenceI> unmappedProtein = new ArrayList<SequenceI>();
874 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons = buildCodonColumnsMap(
875 protein, dna, unmappedProtein);
876 return alignProteinAs(protein, alignedCodons, unmappedProtein);
880 * Realigns the given dna to match the alignment of the protein, using codon
881 * mappings to translate aligned peptide positions to codons.
883 * Always produces a padded CDS alignment.
886 * the alignment whose sequences are realigned by this method
888 * the protein alignment whose alignment we are 'copying'
889 * @return the number of sequences that were realigned
891 public static int alignCdsAsProtein(AlignmentI dna, AlignmentI protein)
893 if (protein.isNucleotide() || !dna.isNucleotide())
895 System.err.println("Wrong alignment type in alignProteinAsDna");
898 // todo: implement this
899 List<AlignedCodonFrame> mappings = protein.getCodonFrames();
900 int alignedCount = 0;
901 int width = 0; // alignment width for padding CDS
902 for (SequenceI dnaSeq : dna.getSequences())
904 if (alignCdsSequenceAsProtein(dnaSeq, protein, mappings,
905 dna.getGapCharacter()))
909 width = Math.max(dnaSeq.getLength(), width);
913 for (SequenceI dnaSeq : dna.getSequences())
915 oldwidth = dnaSeq.getLength();
916 diff = width - oldwidth;
919 dnaSeq.insertCharAt(oldwidth, diff, dna.getGapCharacter());
926 * Helper method to align (if possible) the dna sequence to match the
927 * alignment of a mapped protein sequence. This is currently limited to
928 * handling coding sequence only.
936 static boolean alignCdsSequenceAsProtein(SequenceI cdsSeq,
937 AlignmentI protein, List<AlignedCodonFrame> mappings,
940 SequenceI cdsDss = cdsSeq.getDatasetSequence();
944 .println("alignCdsSequenceAsProtein needs aligned sequence!");
948 List<AlignedCodonFrame> dnaMappings = MappingUtils
949 .findMappingsForSequence(cdsSeq, mappings);
950 for (AlignedCodonFrame mapping : dnaMappings)
952 SequenceI peptide = mapping.findAlignedSequence(cdsSeq, protein);
955 final int peptideLength = peptide.getLength();
956 Mapping map = mapping.getMappingBetween(cdsSeq, peptide);
959 MapList mapList = map.getMap();
960 if (map.getTo() == peptide.getDatasetSequence())
962 mapList = mapList.getInverse();
964 final int cdsLength = cdsDss.getLength();
965 int mappedFromLength = MappingUtils.getLength(mapList
967 int mappedToLength = MappingUtils
968 .getLength(mapList.getToRanges());
969 boolean addStopCodon = (cdsLength == mappedFromLength
970 * CODON_LENGTH + CODON_LENGTH)
971 || (peptide.getDatasetSequence()
972 .getLength() == mappedFromLength - 1);
973 if (cdsLength != mappedToLength && !addStopCodon)
975 System.err.println(String.format(
976 "Can't align cds as protein (length mismatch %d/%d): %s",
977 cdsLength, mappedToLength, cdsSeq.getName()));
981 * pre-fill the aligned cds sequence with gaps
983 char[] alignedCds = new char[peptideLength * CODON_LENGTH
984 + (addStopCodon ? CODON_LENGTH : 0)];
985 Arrays.fill(alignedCds, gapChar);
988 * walk over the aligned peptide sequence and insert mapped
989 * codons for residues in the aligned cds sequence
992 int cdsStart = cdsDss.getStart();
993 int proteinPos = peptide.getStart() - 1;
996 for (int col = 0; col < peptideLength; col++)
998 char residue = peptide.getCharAt(col);
1000 if (Comparison.isGap(residue))
1002 cdsCol += CODON_LENGTH;
1007 int[] codon = mapList.locateInTo(proteinPos, proteinPos);
1010 // e.g. incomplete start codon, X in peptide
1011 cdsCol += CODON_LENGTH;
1015 for (int j = codon[0]; j <= codon[1]; j++)
1017 char mappedBase = cdsDss.getCharAt(j - cdsStart);
1018 alignedCds[cdsCol++] = mappedBase;
1026 * append stop codon if not mapped from protein,
1027 * closing it up to the end of the mapped sequence
1029 if (copiedBases == cdsLength - CODON_LENGTH)
1031 for (int i = alignedCds.length - 1; i >= 0; i--)
1033 if (!Comparison.isGap(alignedCds[i]))
1035 cdsCol = i + 1; // gap just after end of sequence
1039 for (int i = cdsLength - CODON_LENGTH; i < cdsLength; i++)
1041 alignedCds[cdsCol++] = cdsDss.getCharAt(i);
1044 cdsSeq.setSequence(new String(alignedCds));
1053 * Builds a map whose key is an aligned codon position (3 alignment column
1054 * numbers base 0), and whose value is a map from protein sequence to each
1055 * protein's peptide residue for that codon. The map generates an ordering of
1056 * the codons, and allows us to read off the peptides at each position in
1057 * order to assemble 'aligned' protein sequences.
1060 * the protein alignment
1062 * the coding dna alignment
1063 * @param unmappedProtein
1064 * any unmapped proteins are added to this list
1067 protected static Map<AlignedCodon, Map<SequenceI, AlignedCodon>> buildCodonColumnsMap(
1068 AlignmentI protein, AlignmentI dna,
1069 List<SequenceI> unmappedProtein)
1072 * maintain a list of any proteins with no mappings - these will be
1073 * rendered 'as is' in the protein alignment as we can't align them
1075 unmappedProtein.addAll(protein.getSequences());
1077 List<AlignedCodonFrame> mappings = protein.getCodonFrames();
1080 * Map will hold, for each aligned codon position e.g. [3, 5, 6], a map of
1081 * {dnaSequence, {proteinSequence, codonProduct}} at that position. The
1082 * comparator keeps the codon positions ordered.
1084 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons = new TreeMap<AlignedCodon, Map<SequenceI, AlignedCodon>>(
1085 new CodonComparator());
1087 for (SequenceI dnaSeq : dna.getSequences())
1089 for (AlignedCodonFrame mapping : mappings)
1091 SequenceI prot = mapping.findAlignedSequence(dnaSeq, protein);
1094 Mapping seqMap = mapping.getMappingForSequence(dnaSeq);
1095 addCodonPositions(dnaSeq, prot, protein.getGapCharacter(), seqMap,
1097 unmappedProtein.remove(prot);
1103 * Finally add any unmapped peptide start residues (e.g. for incomplete
1104 * codons) as if at the codon position before the second residue
1106 // TODO resolve JAL-2022 so this fudge can be removed
1107 int mappedSequenceCount = protein.getHeight() - unmappedProtein.size();
1108 addUnmappedPeptideStarts(alignedCodons, mappedSequenceCount);
1110 return alignedCodons;
1114 * Scans for any protein mapped from position 2 (meaning unmapped start
1115 * position e.g. an incomplete codon), and synthesizes a 'codon' for it at the
1116 * preceding position in the alignment
1118 * @param alignedCodons
1119 * the codon-to-peptide map
1120 * @param mappedSequenceCount
1121 * the number of distinct sequences in the map
1123 protected static void addUnmappedPeptideStarts(
1124 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons,
1125 int mappedSequenceCount)
1127 // TODO delete this ugly hack once JAL-2022 is resolved
1128 // i.e. we can model startPhase > 0 (incomplete start codon)
1130 List<SequenceI> sequencesChecked = new ArrayList<SequenceI>();
1131 AlignedCodon lastCodon = null;
1132 Map<SequenceI, AlignedCodon> toAdd = new HashMap<SequenceI, AlignedCodon>();
1134 for (Entry<AlignedCodon, Map<SequenceI, AlignedCodon>> entry : alignedCodons
1137 for (Entry<SequenceI, AlignedCodon> sequenceCodon : entry.getValue()
1140 SequenceI seq = sequenceCodon.getKey();
1141 if (sequencesChecked.contains(seq))
1145 sequencesChecked.add(seq);
1146 AlignedCodon codon = sequenceCodon.getValue();
1147 if (codon.peptideCol > 1)
1150 "Problem mapping protein with >1 unmapped start positions: "
1153 else if (codon.peptideCol == 1)
1156 * first position (peptideCol == 0) was unmapped - add it
1158 if (lastCodon != null)
1160 AlignedCodon firstPeptide = new AlignedCodon(lastCodon.pos1,
1161 lastCodon.pos2, lastCodon.pos3,
1162 String.valueOf(seq.getCharAt(0)), 0);
1163 toAdd.put(seq, firstPeptide);
1168 * unmapped residue at start of alignment (no prior column) -
1169 * 'insert' at nominal codon [0, 0, 0]
1171 AlignedCodon firstPeptide = new AlignedCodon(0, 0, 0,
1172 String.valueOf(seq.getCharAt(0)), 0);
1173 toAdd.put(seq, firstPeptide);
1176 if (sequencesChecked.size() == mappedSequenceCount)
1178 // no need to check past first mapped position in all sequences
1182 lastCodon = entry.getKey();
1186 * add any new codons safely after iterating over the map
1188 for (Entry<SequenceI, AlignedCodon> startCodon : toAdd.entrySet())
1190 addCodonToMap(alignedCodons, startCodon.getValue(),
1191 startCodon.getKey());
1196 * Update the aligned protein sequences to match the codon alignments given in
1200 * @param alignedCodons
1201 * an ordered map of codon positions (columns), with sequence/peptide
1202 * values present in each column
1203 * @param unmappedProtein
1206 protected static int alignProteinAs(AlignmentI protein,
1207 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons,
1208 List<SequenceI> unmappedProtein)
1211 * prefill peptide sequences with gaps
1213 int alignedWidth = alignedCodons.size();
1214 char[] gaps = new char[alignedWidth];
1215 Arrays.fill(gaps, protein.getGapCharacter());
1216 Map<SequenceI, char[]> peptides = new HashMap<>();
1217 for (SequenceI seq : protein.getSequences())
1219 if (!unmappedProtein.contains(seq))
1221 peptides.put(seq, Arrays.copyOf(gaps, gaps.length));
1226 * Traverse the codons left to right (as defined by CodonComparator)
1227 * and insert peptides in each column where the sequence is mapped.
1228 * This gives a peptide 'alignment' where residues are aligned if their
1229 * corresponding codons occupy the same columns in the cdna alignment.
1232 for (AlignedCodon codon : alignedCodons.keySet())
1234 final Map<SequenceI, AlignedCodon> columnResidues = alignedCodons
1236 for (Entry<SequenceI, AlignedCodon> entry : columnResidues.entrySet())
1238 char residue = entry.getValue().product.charAt(0);
1239 peptides.get(entry.getKey())[column] = residue;
1245 * and finally set the constructed sequences
1247 for (Entry<SequenceI, char[]> entry : peptides.entrySet())
1249 entry.getKey().setSequence(new String(entry.getValue()));
1256 * Populate the map of aligned codons by traversing the given sequence
1257 * mapping, locating the aligned positions of mapped codons, and adding those
1258 * positions and their translation products to the map.
1261 * the aligned sequence we are mapping from
1263 * the sequence to be aligned to the codons
1265 * the gap character in the dna sequence
1267 * a mapping to a sequence translation
1268 * @param alignedCodons
1269 * the map we are building up
1271 static void addCodonPositions(SequenceI dna, SequenceI protein,
1272 char gapChar, Mapping seqMap,
1273 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons)
1275 Iterator<AlignedCodon> codons = seqMap.getCodonIterator(dna, gapChar);
1278 * add codon positions, and their peptide translations, to the alignment
1279 * map, while remembering the first codon mapped
1281 while (codons.hasNext())
1285 AlignedCodon codon = codons.next();
1286 addCodonToMap(alignedCodons, codon, protein);
1287 } catch (IncompleteCodonException e)
1289 // possible incomplete trailing codon - ignore
1290 } catch (NoSuchElementException e)
1292 // possibly peptide lacking STOP
1298 * Helper method to add a codon-to-peptide entry to the aligned codons map
1300 * @param alignedCodons
1304 protected static void addCodonToMap(
1305 Map<AlignedCodon, Map<SequenceI, AlignedCodon>> alignedCodons,
1306 AlignedCodon codon, SequenceI protein)
1308 Map<SequenceI, AlignedCodon> seqProduct = alignedCodons.get(codon);
1309 if (seqProduct == null)
1311 seqProduct = new HashMap<SequenceI, AlignedCodon>();
1312 alignedCodons.put(codon, seqProduct);
1314 seqProduct.put(protein, codon);
1318 * Returns true if a cDNA/Protein mapping either exists, or could be made,
1319 * between at least one pair of sequences in the two alignments. Currently,
1322 * <li>One alignment must be nucleotide, and the other protein</li>
1323 * <li>At least one pair of sequences must be already mapped, or mappable</li>
1324 * <li>Mappable means the nucleotide translation matches the protein
1326 * <li>The translation may ignore start and stop codons if present in the
1334 public static boolean isMappable(AlignmentI al1, AlignmentI al2)
1336 if (al1 == null || al2 == null)
1342 * Require one nucleotide and one protein
1344 if (al1.isNucleotide() == al2.isNucleotide())
1348 AlignmentI dna = al1.isNucleotide() ? al1 : al2;
1349 AlignmentI protein = dna == al1 ? al2 : al1;
1350 List<AlignedCodonFrame> mappings = protein.getCodonFrames();
1351 for (SequenceI dnaSeq : dna.getSequences())
1353 for (SequenceI proteinSeq : protein.getSequences())
1355 if (isMappable(dnaSeq, proteinSeq, mappings))
1365 * Returns true if the dna sequence is mapped, or could be mapped, to the
1373 protected static boolean isMappable(SequenceI dnaSeq,
1374 SequenceI proteinSeq, List<AlignedCodonFrame> mappings)
1376 if (dnaSeq == null || proteinSeq == null)
1381 SequenceI dnaDs = dnaSeq.getDatasetSequence() == null ? dnaSeq
1382 : dnaSeq.getDatasetSequence();
1383 SequenceI proteinDs = proteinSeq.getDatasetSequence() == null
1385 : proteinSeq.getDatasetSequence();
1387 for (AlignedCodonFrame mapping : mappings)
1389 if (proteinDs == mapping.getAaForDnaSeq(dnaDs))
1399 * Just try to make a mapping (it is not yet stored), test whether
1402 return mapCdnaToProtein(proteinDs, dnaDs) != null;
1406 * Finds any reference annotations associated with the sequences in
1407 * sequenceScope, that are not already added to the alignment, and adds them
1408 * to the 'candidates' map. Also populates a lookup table of annotation
1409 * labels, keyed by calcId, for use in constructing tooltips or the like.
1411 * @param sequenceScope
1412 * the sequences to scan for reference annotations
1413 * @param labelForCalcId
1414 * (optional) map to populate with label for calcId
1416 * map to populate with annotations for sequence
1418 * the alignment to check for presence of annotations
1420 public static void findAddableReferenceAnnotations(
1421 List<SequenceI> sequenceScope, Map<String, String> labelForCalcId,
1422 final Map<SequenceI, List<AlignmentAnnotation>> candidates,
1425 if (sequenceScope == null)
1431 * For each sequence in scope, make a list of any annotations on the
1432 * underlying dataset sequence which are not already on the alignment.
1434 * Add to a map of { alignmentSequence, <List of annotations to add> }
1436 for (SequenceI seq : sequenceScope)
1438 SequenceI dataset = seq.getDatasetSequence();
1439 if (dataset == null)
1443 AlignmentAnnotation[] datasetAnnotations = dataset.getAnnotation();
1444 if (datasetAnnotations == null)
1448 final List<AlignmentAnnotation> result = new ArrayList<AlignmentAnnotation>();
1449 for (AlignmentAnnotation dsann : datasetAnnotations)
1452 * Find matching annotations on the alignment. If none is found, then
1453 * add this annotation to the list of 'addable' annotations for this
1456 final Iterable<AlignmentAnnotation> matchedAlignmentAnnotations = al
1457 .findAnnotations(seq, dsann.getCalcId(), dsann.label);
1458 if (!matchedAlignmentAnnotations.iterator().hasNext())
1461 if (labelForCalcId != null)
1463 labelForCalcId.put(dsann.getCalcId(), dsann.label);
1468 * Save any addable annotations for this sequence
1470 if (!result.isEmpty())
1472 candidates.put(seq, result);
1478 * Adds annotations to the top of the alignment annotations, in the same order
1479 * as their related sequences.
1481 * @param annotations
1482 * the annotations to add
1484 * the alignment to add them to
1485 * @param selectionGroup
1486 * current selection group (or null if none)
1488 public static void addReferenceAnnotations(
1489 Map<SequenceI, List<AlignmentAnnotation>> annotations,
1490 final AlignmentI alignment, final SequenceGroup selectionGroup)
1492 for (SequenceI seq : annotations.keySet())
1494 for (AlignmentAnnotation ann : annotations.get(seq))
1496 AlignmentAnnotation copyAnn = new AlignmentAnnotation(ann);
1498 int endRes = ann.annotations.length;
1499 if (selectionGroup != null)
1501 startRes = selectionGroup.getStartRes();
1502 endRes = selectionGroup.getEndRes();
1504 copyAnn.restrict(startRes, endRes);
1507 * Add to the sequence (sets copyAnn.datasetSequence), unless the
1508 * original annotation is already on the sequence.
1510 if (!seq.hasAnnotation(ann))
1512 seq.addAlignmentAnnotation(copyAnn);
1515 copyAnn.adjustForAlignment();
1516 // add to the alignment and set visible
1517 alignment.addAnnotation(copyAnn);
1518 copyAnn.visible = true;
1524 * Set visibility of alignment annotations of specified types (labels), for
1525 * specified sequences. This supports controls like "Show all secondary
1526 * structure", "Hide all Temp factor", etc.
1528 * @al the alignment to scan for annotations
1530 * the types (labels) of annotations to be updated
1531 * @param forSequences
1532 * if not null, only annotations linked to one of these sequences are
1533 * in scope for update; if null, acts on all sequence annotations
1535 * if this flag is true, 'types' is ignored (label not checked)
1537 * if true, set visibility on, else set off
1539 public static void showOrHideSequenceAnnotations(AlignmentI al,
1540 Collection<String> types, List<SequenceI> forSequences,
1541 boolean anyType, boolean doShow)
1543 AlignmentAnnotation[] anns = al.getAlignmentAnnotation();
1546 for (AlignmentAnnotation aa : anns)
1548 if (anyType || types.contains(aa.label))
1550 if ((aa.sequenceRef != null) && (forSequences == null
1551 || forSequences.contains(aa.sequenceRef)))
1553 aa.visible = doShow;
1561 * Returns true if either sequence has a cross-reference to the other
1567 public static boolean haveCrossRef(SequenceI seq1, SequenceI seq2)
1569 // Note: moved here from class CrossRef as the latter class has dependencies
1570 // not availability to the applet's classpath
1571 return hasCrossRef(seq1, seq2) || hasCrossRef(seq2, seq1);
1575 * Returns true if seq1 has a cross-reference to seq2. Currently this assumes
1576 * that sequence name is structured as Source|AccessionId.
1582 public static boolean hasCrossRef(SequenceI seq1, SequenceI seq2)
1584 if (seq1 == null || seq2 == null)
1588 String name = seq2.getName();
1589 final DBRefEntry[] xrefs = seq1.getDBRefs();
1592 for (DBRefEntry xref : xrefs)
1594 String xrefName = xref.getSource() + "|" + xref.getAccessionId();
1595 // case-insensitive test, consistent with DBRefEntry.equalRef()
1596 if (xrefName.equalsIgnoreCase(name))
1606 * Constructs an alignment consisting of the mapped (CDS) regions in the given
1607 * nucleotide sequences, and updates mappings to match. The CDS sequences are
1608 * added to the original alignment's dataset, which is shared by the new
1609 * alignment. Mappings from nucleotide to CDS, and from CDS to protein, are
1610 * added to the alignment dataset.
1613 * aligned nucleotide (dna or cds) sequences
1615 * the alignment dataset the sequences belong to
1617 * (optional) to restrict results to CDS that map to specified
1619 * @return an alignment whose sequences are the cds-only parts of the dna
1620 * sequences (or null if no mappings are found)
1622 public static AlignmentI makeCdsAlignment(SequenceI[] dna,
1623 AlignmentI dataset, SequenceI[] products)
1625 if (dataset == null || dataset.getDataset() != null)
1627 throw new IllegalArgumentException(
1628 "IMPLEMENTATION ERROR: dataset.getDataset() must be null!");
1630 List<SequenceI> foundSeqs = new ArrayList<SequenceI>();
1631 List<SequenceI> cdsSeqs = new ArrayList<SequenceI>();
1632 List<AlignedCodonFrame> mappings = dataset.getCodonFrames();
1633 HashSet<SequenceI> productSeqs = null;
1634 if (products != null)
1636 productSeqs = new HashSet<SequenceI>();
1637 for (SequenceI seq : products)
1639 productSeqs.add(seq.getDatasetSequence() == null ? seq
1640 : seq.getDatasetSequence());
1645 * Construct CDS sequences from mappings on the alignment dataset.
1647 * - find the protein product(s) mapped to from each dna sequence
1648 * - if the mapping covers the whole dna sequence (give or take start/stop
1649 * codon), take the dna as the CDS sequence
1650 * - else search dataset mappings for a suitable dna sequence, i.e. one
1651 * whose whole sequence is mapped to the protein
1652 * - if no sequence found, construct one from the dna sequence and mapping
1653 * (and add it to dataset so it is found if this is repeated)
1655 for (SequenceI dnaSeq : dna)
1657 SequenceI dnaDss = dnaSeq.getDatasetSequence() == null ? dnaSeq
1658 : dnaSeq.getDatasetSequence();
1660 List<AlignedCodonFrame> seqMappings = MappingUtils
1661 .findMappingsForSequence(dnaSeq, mappings);
1662 for (AlignedCodonFrame mapping : seqMappings)
1664 List<Mapping> mappingsFromSequence = mapping
1665 .getMappingsFromSequence(dnaSeq);
1667 for (Mapping aMapping : mappingsFromSequence)
1669 MapList mapList = aMapping.getMap();
1670 if (mapList.getFromRatio() == 1)
1673 * not a dna-to-protein mapping (likely dna-to-cds)
1679 * skip if mapping is not to one of the target set of proteins
1681 SequenceI proteinProduct = aMapping.getTo();
1682 if (productSeqs != null && !productSeqs.contains(proteinProduct))
1688 * try to locate the CDS from the dataset mappings;
1689 * guard against duplicate results (for the case that protein has
1690 * dbrefs to both dna and cds sequences)
1692 SequenceI cdsSeq = findCdsForProtein(mappings, dnaSeq,
1693 seqMappings, aMapping);
1696 if (!foundSeqs.contains(cdsSeq))
1698 foundSeqs.add(cdsSeq);
1699 SequenceI derivedSequence = cdsSeq.deriveSequence();
1700 cdsSeqs.add(derivedSequence);
1701 if (!dataset.getSequences().contains(cdsSeq))
1703 dataset.addSequence(cdsSeq);
1710 * didn't find mapped CDS sequence - construct it and add
1711 * its dataset sequence to the dataset
1713 cdsSeq = makeCdsSequence(dnaSeq.getDatasetSequence(), aMapping,
1714 dataset).deriveSequence();
1715 // cdsSeq has a name constructed as CDS|<dbref>
1716 // <dbref> will be either the accession for the coding sequence,
1717 // marked in the /via/ dbref to the protein product accession
1718 // or it will be the original nucleotide accession.
1719 SequenceI cdsSeqDss = cdsSeq.getDatasetSequence();
1721 cdsSeqs.add(cdsSeq);
1723 if (!dataset.getSequences().contains(cdsSeqDss))
1725 // check if this sequence is a newly created one
1726 // so needs adding to the dataset
1727 dataset.addSequence(cdsSeqDss);
1731 * add a mapping from CDS to the (unchanged) mapped to range
1733 List<int[]> cdsRange = Collections
1734 .singletonList(new int[]
1735 { 1, cdsSeq.getLength() });
1736 MapList cdsToProteinMap = new MapList(cdsRange,
1737 mapList.getToRanges(), mapList.getFromRatio(),
1738 mapList.getToRatio());
1739 AlignedCodonFrame cdsToProteinMapping = new AlignedCodonFrame();
1740 cdsToProteinMapping.addMap(cdsSeqDss, proteinProduct,
1744 * guard against duplicating the mapping if repeating this action
1746 if (!mappings.contains(cdsToProteinMapping))
1748 mappings.add(cdsToProteinMapping);
1751 propagateDBRefsToCDS(cdsSeqDss, dnaSeq.getDatasetSequence(),
1752 proteinProduct, aMapping);
1754 * add another mapping from original 'from' range to CDS
1756 AlignedCodonFrame dnaToCdsMapping = new AlignedCodonFrame();
1757 MapList dnaToCdsMap = new MapList(mapList.getFromRanges(),
1759 dnaToCdsMapping.addMap(dnaSeq.getDatasetSequence(), cdsSeqDss,
1761 if (!mappings.contains(dnaToCdsMapping))
1763 mappings.add(dnaToCdsMapping);
1767 * add DBRef with mapping from protein to CDS
1768 * (this enables Get Cross-References from protein alignment)
1769 * This is tricky because we can't have two DBRefs with the
1770 * same source and accession, so need a different accession for
1771 * the CDS from the dna sequence
1774 // specific use case:
1775 // Genomic contig ENSCHR:1, contains coding regions for ENSG01,
1776 // ENSG02, ENSG03, with transcripts and products similarly named.
1777 // cannot add distinct dbrefs mapping location on ENSCHR:1 to ENSG01
1779 // JBPNote: ?? can't actually create an example that demonstrates we
1781 // synthesize an xref.
1783 for (DBRefEntry primRef : dnaDss.getPrimaryDBRefs())
1785 // creates a complementary cross-reference to the source sequence's
1786 // primary reference.
1788 DBRefEntry cdsCrossRef = new DBRefEntry(primRef.getSource(),
1789 primRef.getSource() + ":" + primRef.getVersion(),
1790 primRef.getAccessionId());
1792 .setMap(new Mapping(dnaDss, new MapList(dnaToCdsMap)));
1793 cdsSeqDss.addDBRef(cdsCrossRef);
1795 // problem here is that the cross-reference is synthesized -
1796 // cdsSeq.getName() may be like 'CDS|dnaaccession' or
1798 // assuming cds version same as dna ?!?
1800 DBRefEntry proteinToCdsRef = new DBRefEntry(primRef.getSource(),
1801 primRef.getVersion(), cdsSeq.getName());
1803 proteinToCdsRef.setMap(
1804 new Mapping(cdsSeqDss, cdsToProteinMap.getInverse()));
1805 proteinProduct.addDBRef(proteinToCdsRef);
1809 * transfer any features on dna that overlap the CDS
1811 transferFeatures(dnaSeq, cdsSeq, dnaToCdsMap, null,
1812 SequenceOntologyI.CDS);
1817 AlignmentI cds = new Alignment(
1818 cdsSeqs.toArray(new SequenceI[cdsSeqs.size()]));
1819 cds.setDataset(dataset);
1825 * A helper method that finds a CDS sequence in the alignment dataset that is
1826 * mapped to the given protein sequence, and either is, or has a mapping from,
1827 * the given dna sequence.
1830 * set of all mappings on the dataset
1832 * a dna (or cds) sequence we are searching from
1833 * @param seqMappings
1834 * the set of mappings involving dnaSeq
1836 * an initial candidate from seqMappings
1839 static SequenceI findCdsForProtein(List<AlignedCodonFrame> mappings,
1840 SequenceI dnaSeq, List<AlignedCodonFrame> seqMappings,
1844 * TODO a better dna-cds-protein mapping data representation to allow easy
1845 * navigation; until then this clunky looping around lists of mappings
1847 SequenceI seqDss = dnaSeq.getDatasetSequence() == null ? dnaSeq
1848 : dnaSeq.getDatasetSequence();
1849 SequenceI proteinProduct = aMapping.getTo();
1852 * is this mapping from the whole dna sequence (i.e. CDS)?
1853 * allowing for possible stop codon on dna but not peptide
1855 int mappedFromLength = MappingUtils
1856 .getLength(aMapping.getMap().getFromRanges());
1857 int dnaLength = seqDss.getLength();
1858 if (mappedFromLength == dnaLength
1859 || mappedFromLength == dnaLength - CODON_LENGTH)
1865 * looks like we found the dna-to-protein mapping; search for the
1866 * corresponding cds-to-protein mapping
1868 List<AlignedCodonFrame> mappingsToPeptide = MappingUtils
1869 .findMappingsForSequence(proteinProduct, mappings);
1870 for (AlignedCodonFrame acf : mappingsToPeptide)
1872 for (SequenceToSequenceMapping map : acf.getMappings())
1874 Mapping mapping = map.getMapping();
1875 if (mapping != aMapping
1876 && mapping.getMap().getFromRatio() == CODON_LENGTH
1877 && proteinProduct == mapping.getTo()
1878 && seqDss != map.getFromSeq())
1880 mappedFromLength = MappingUtils
1881 .getLength(mapping.getMap().getFromRanges());
1882 if (mappedFromLength == map.getFromSeq().getLength())
1885 * found a 3:1 mapping to the protein product which covers
1886 * the whole dna sequence i.e. is from CDS; finally check it
1887 * is from the dna start sequence
1889 SequenceI cdsSeq = map.getFromSeq();
1890 List<AlignedCodonFrame> dnaToCdsMaps = MappingUtils
1891 .findMappingsForSequence(cdsSeq, seqMappings);
1892 if (!dnaToCdsMaps.isEmpty())
1904 * Helper method that makes a CDS sequence as defined by the mappings from the
1905 * given sequence i.e. extracts the 'mapped from' ranges (which may be on
1906 * forward or reverse strand).
1911 * - existing dataset. We check for sequences that look like the CDS
1912 * we are about to construct, if one exists already, then we will
1913 * just return that one.
1914 * @return CDS sequence (as a dataset sequence)
1916 static SequenceI makeCdsSequence(SequenceI seq, Mapping mapping,
1919 char[] seqChars = seq.getSequence();
1920 List<int[]> fromRanges = mapping.getMap().getFromRanges();
1921 int cdsWidth = MappingUtils.getLength(fromRanges);
1922 char[] newSeqChars = new char[cdsWidth];
1925 for (int[] range : fromRanges)
1927 if (range[0] <= range[1])
1929 // forward strand mapping - just copy the range
1930 int length = range[1] - range[0] + 1;
1931 System.arraycopy(seqChars, range[0] - 1, newSeqChars, newPos,
1937 // reverse strand mapping - copy and complement one by one
1938 for (int i = range[0]; i >= range[1]; i--)
1940 newSeqChars[newPos++] = Dna.getComplement(seqChars[i - 1]);
1946 * assign 'from id' held in the mapping if set (e.g. EMBL protein_id),
1947 * else generate a sequence name
1949 String mapFromId = mapping.getMappedFromId();
1950 String seqId = "CDS|" + (mapFromId != null ? mapFromId : seq.getName());
1951 SequenceI newSeq = new Sequence(seqId, newSeqChars, 1, newPos);
1952 if (dataset != null)
1954 SequenceI[] matches = dataset.findSequenceMatch(newSeq.getName());
1955 if (matches != null)
1957 boolean matched = false;
1958 for (SequenceI mtch : matches)
1960 if (mtch.getStart() != newSeq.getStart())
1964 if (mtch.getEnd() != newSeq.getEnd())
1968 if (!Arrays.equals(mtch.getSequence(), newSeq.getSequence()))
1980 "JAL-2154 regression: warning - found (and ignnored a duplicate CDS sequence):"
1986 // newSeq.setDescription(mapFromId);
1992 * add any DBRefEntrys to cdsSeq from contig that have a Mapping congruent to
1993 * the given mapping.
1998 * @return list of DBRefEntrys added.
2000 public static List<DBRefEntry> propagateDBRefsToCDS(SequenceI cdsSeq,
2001 SequenceI contig, SequenceI proteinProduct, Mapping mapping)
2004 // gather direct refs from contig congrent with mapping
2005 List<DBRefEntry> direct = new ArrayList<DBRefEntry>();
2006 HashSet<String> directSources = new HashSet<String>();
2007 if (contig.getDBRefs() != null)
2009 for (DBRefEntry dbr : contig.getDBRefs())
2011 if (dbr.hasMap() && dbr.getMap().getMap().isTripletMap())
2013 MapList map = dbr.getMap().getMap();
2014 // check if map is the CDS mapping
2015 if (mapping.getMap().equals(map))
2018 directSources.add(dbr.getSource());
2023 DBRefEntry[] onSource = DBRefUtils.selectRefs(
2024 proteinProduct.getDBRefs(),
2025 directSources.toArray(new String[0]));
2026 List<DBRefEntry> propagated = new ArrayList<DBRefEntry>();
2028 // and generate appropriate mappings
2029 for (DBRefEntry cdsref : direct)
2031 // clone maplist and mapping
2032 MapList cdsposmap = new MapList(
2033 Arrays.asList(new int[][]
2034 { new int[] { cdsSeq.getStart(), cdsSeq.getEnd() } }),
2035 cdsref.getMap().getMap().getToRanges(), 3, 1);
2036 Mapping cdsmap = new Mapping(cdsref.getMap().getTo(),
2037 cdsref.getMap().getMap());
2040 DBRefEntry newref = new DBRefEntry(cdsref.getSource(),
2041 cdsref.getVersion(), cdsref.getAccessionId(),
2042 new Mapping(cdsmap.getTo(), cdsposmap));
2044 // and see if we can map to the protein product for this mapping.
2045 // onSource is the filtered set of accessions on protein that we are
2046 // tranferring, so we assume accession is the same.
2047 if (cdsmap.getTo() == null && onSource != null)
2049 List<DBRefEntry> sourceRefs = DBRefUtils.searchRefs(onSource,
2050 cdsref.getAccessionId());
2051 if (sourceRefs != null)
2053 for (DBRefEntry srcref : sourceRefs)
2055 if (srcref.getSource().equalsIgnoreCase(cdsref.getSource()))
2057 // we have found a complementary dbref on the protein product, so
2058 // update mapping's getTo
2059 newref.getMap().setTo(proteinProduct);
2064 cdsSeq.addDBRef(newref);
2065 propagated.add(newref);
2071 * Transfers co-located features on 'fromSeq' to 'toSeq', adjusting the
2072 * feature start/end ranges, optionally omitting specified feature types.
2073 * Returns the number of features copied.
2078 * the mapping from 'fromSeq' to 'toSeq'
2080 * if not null, only features of this type are copied (including
2081 * subtypes in the Sequence Ontology)
2084 public static int transferFeatures(SequenceI fromSeq, SequenceI toSeq,
2085 MapList mapping, String select, String... omitting)
2087 SequenceI copyTo = toSeq;
2088 while (copyTo.getDatasetSequence() != null)
2090 copyTo = copyTo.getDatasetSequence();
2094 * get features, optionally restricted by an ontology term
2096 List<SequenceFeature> sfs = select == null ? fromSeq.getFeatures()
2097 .getPositionalFeatures() : fromSeq.getFeatures()
2098 .getFeaturesByOntology(select);
2101 for (SequenceFeature sf : sfs)
2103 String type = sf.getType();
2104 boolean omit = false;
2105 for (String toOmit : omitting)
2107 if (type.equals(toOmit))
2118 * locate the mapped range - null if either start or end is
2119 * not mapped (no partial overlaps are calculated)
2121 int start = sf.getBegin();
2122 int end = sf.getEnd();
2123 int[] mappedTo = mapping.locateInTo(start, end);
2125 * if whole exon range doesn't map, try interpreting it
2126 * as 5' or 3' exon overlapping the CDS range
2128 if (mappedTo == null)
2130 mappedTo = mapping.locateInTo(end, end);
2131 if (mappedTo != null)
2134 * end of exon is in CDS range - 5' overlap
2135 * to a range from the start of the peptide
2140 if (mappedTo == null)
2142 mappedTo = mapping.locateInTo(start, start);
2143 if (mappedTo != null)
2146 * start of exon is in CDS range - 3' overlap
2147 * to a range up to the end of the peptide
2149 mappedTo[1] = toSeq.getLength();
2152 if (mappedTo != null)
2154 int newBegin = Math.min(mappedTo[0], mappedTo[1]);
2155 int newEnd = Math.max(mappedTo[0], mappedTo[1]);
2156 SequenceFeature copy = new SequenceFeature(sf, newBegin, newEnd,
2157 sf.getFeatureGroup(), sf.getScore());
2158 copyTo.addSequenceFeature(copy);
2166 * Returns a mapping from dna to protein by inspecting sequence features of
2167 * type "CDS" on the dna. A mapping is constructed if the total CDS feature
2168 * length is 3 times the peptide length (optionally after dropping a trailing
2169 * stop codon). This method does not check whether the CDS nucleotide sequence
2170 * translates to the peptide sequence.
2176 public static MapList mapCdsToProtein(SequenceI dnaSeq,
2177 SequenceI proteinSeq)
2179 List<int[]> ranges = findCdsPositions(dnaSeq);
2180 int mappedDnaLength = MappingUtils.getLength(ranges);
2183 * if not a whole number of codons, something is wrong,
2186 if (mappedDnaLength % CODON_LENGTH > 0)
2191 int proteinLength = proteinSeq.getLength();
2192 int proteinStart = proteinSeq.getStart();
2193 int proteinEnd = proteinSeq.getEnd();
2196 * incomplete start codon may mean X at start of peptide
2197 * we ignore both for mapping purposes
2199 if (proteinSeq.getCharAt(0) == 'X')
2201 // todo JAL-2022 support startPhase > 0
2205 List<int[]> proteinRange = new ArrayList<int[]>();
2208 * dna length should map to protein (or protein plus stop codon)
2210 int codesForResidues = mappedDnaLength / CODON_LENGTH;
2211 if (codesForResidues == (proteinLength + 1))
2213 // assuming extra codon is for STOP and not in peptide
2214 // todo: check trailing codon is indeed a STOP codon
2216 mappedDnaLength -= CODON_LENGTH;
2217 MappingUtils.removeEndPositions(CODON_LENGTH, ranges);
2220 if (codesForResidues == proteinLength)
2222 proteinRange.add(new int[] { proteinStart, proteinEnd });
2223 return new MapList(ranges, proteinRange, CODON_LENGTH, 1);
2229 * Returns a list of CDS ranges found (as sequence positions base 1), i.e. of
2230 * [start, end] positions of sequence features of type "CDS" (or a sub-type of
2231 * CDS in the Sequence Ontology). The ranges are sorted into ascending start
2232 * position order, so this method is only valid for linear CDS in the same
2233 * sense as the protein product.
2238 public static List<int[]> findCdsPositions(SequenceI dnaSeq)
2240 List<int[]> result = new ArrayList<int[]>();
2242 List<SequenceFeature> sfs = dnaSeq.getFeatures().getFeaturesByOntology(
2243 SequenceOntologyI.CDS);
2248 SequenceFeatures.sortFeatures(sfs, true);
2250 for (SequenceFeature sf : sfs)
2255 phase = Integer.parseInt(sf.getPhase());
2256 } catch (NumberFormatException e)
2261 * phase > 0 on first codon means 5' incomplete - skip to the start
2262 * of the next codon; example ENST00000496384
2264 int begin = sf.getBegin();
2265 int end = sf.getEnd();
2266 if (result.isEmpty() && phase > 0)
2271 // shouldn't happen!
2273 .println("Error: start phase extends beyond start CDS in "
2274 + dnaSeq.getName());
2277 result.add(new int[] { begin, end });
2281 * Finally sort ranges by start position. This avoids a dependency on
2282 * keeping features in order on the sequence (if they are in order anyway,
2283 * the sort will have almost no work to do). The implicit assumption is CDS
2284 * ranges are assembled in order. Other cases should not use this method,
2285 * but instead construct an explicit mapping for CDS (e.g. EMBL parsing).
2287 Collections.sort(result, IntRangeComparator.ASCENDING);
2292 * Maps exon features from dna to protein, and computes variants in peptide
2293 * product generated by variants in dna, and adds them as sequence_variant
2294 * features on the protein sequence. Returns the number of variant features
2299 * @param dnaToProtein
2301 public static int computeProteinFeatures(SequenceI dnaSeq,
2302 SequenceI peptide, MapList dnaToProtein)
2304 while (dnaSeq.getDatasetSequence() != null)
2306 dnaSeq = dnaSeq.getDatasetSequence();
2308 while (peptide.getDatasetSequence() != null)
2310 peptide = peptide.getDatasetSequence();
2313 transferFeatures(dnaSeq, peptide, dnaToProtein, SequenceOntologyI.EXON);
2316 * compute protein variants from dna variants and codon mappings;
2317 * NB - alternatively we could retrieve this using the REST service e.g.
2318 * http://rest.ensembl.org/overlap/translation
2319 * /ENSP00000288602?feature=transcript_variation;content-type=text/xml
2320 * which would be a bit slower but possibly more reliable
2324 * build a map with codon variations for each potentially varying peptide
2326 LinkedHashMap<Integer, List<DnaVariant>[]> variants = buildDnaVariantsMap(
2327 dnaSeq, dnaToProtein);
2330 * scan codon variations, compute peptide variants and add to peptide sequence
2333 for (Entry<Integer, List<DnaVariant>[]> variant : variants.entrySet())
2335 int peptidePos = variant.getKey();
2336 List<DnaVariant>[] codonVariants = variant.getValue();
2337 count += computePeptideVariants(peptide, peptidePos, codonVariants);
2344 * Computes non-synonymous peptide variants from codon variants and adds them
2345 * as sequence_variant features on the protein sequence (one feature per
2346 * allele variant). Selected attributes (variant id, clinical significance)
2347 * are copied over to the new features.
2350 * the protein sequence
2352 * the position to compute peptide variants for
2353 * @param codonVariants
2354 * a list of dna variants per codon position
2355 * @return the number of features added
2357 static int computePeptideVariants(SequenceI peptide, int peptidePos,
2358 List<DnaVariant>[] codonVariants)
2360 String residue = String.valueOf(peptide.getCharAt(peptidePos - 1));
2362 String base1 = codonVariants[0].get(0).base;
2363 String base2 = codonVariants[1].get(0).base;
2364 String base3 = codonVariants[2].get(0).base;
2367 * variants in first codon base
2369 for (DnaVariant var : codonVariants[0])
2371 if (var.variant != null)
2373 String alleles = (String) var.variant.getValue("alleles");
2374 if (alleles != null)
2376 for (String base : alleles.split(","))
2378 String codon = base + base2 + base3;
2379 if (addPeptideVariant(peptide, peptidePos, residue, var, codon))
2389 * variants in second codon base
2391 for (DnaVariant var : codonVariants[1])
2393 if (var.variant != null)
2395 String alleles = (String) var.variant.getValue("alleles");
2396 if (alleles != null)
2398 for (String base : alleles.split(","))
2400 String codon = base1 + base + base3;
2401 if (addPeptideVariant(peptide, peptidePos, residue, var, codon))
2411 * variants in third codon base
2413 for (DnaVariant var : codonVariants[2])
2415 if (var.variant != null)
2417 String alleles = (String) var.variant.getValue("alleles");
2418 if (alleles != null)
2420 for (String base : alleles.split(","))
2422 String codon = base1 + base2 + base;
2423 if (addPeptideVariant(peptide, peptidePos, residue, var, codon))
2436 * Helper method that adds a peptide variant feature, provided the given codon
2437 * translates to a value different to the current residue (is a non-synonymous
2438 * variant). ID and clinical_significance attributes of the dna variant (if
2439 * present) are copied to the new feature.
2446 * @return true if a feature was added, else false
2448 static boolean addPeptideVariant(SequenceI peptide, int peptidePos,
2449 String residue, DnaVariant var, String codon)
2452 * get peptide translation of codon e.g. GAT -> D
2453 * note that variants which are not single alleles,
2454 * e.g. multibase variants or HGMD_MUTATION etc
2455 * are currently ignored here
2457 String trans = codon.contains("-") ? "-"
2458 : (codon.length() > CODON_LENGTH ? null
2459 : ResidueProperties.codonTranslate(codon));
2460 if (trans != null && !trans.equals(residue))
2462 String residue3Char = StringUtils
2463 .toSentenceCase(ResidueProperties.aa2Triplet.get(residue));
2464 String trans3Char = StringUtils
2465 .toSentenceCase(ResidueProperties.aa2Triplet.get(trans));
2466 String desc = "p." + residue3Char + peptidePos + trans3Char;
2467 SequenceFeature sf = new SequenceFeature(
2468 SequenceOntologyI.SEQUENCE_VARIANT, desc, peptidePos,
2469 peptidePos, var.getSource());
2470 StringBuilder attributes = new StringBuilder(32);
2471 String id = (String) var.variant.getValue(ID);
2474 if (id.startsWith(SEQUENCE_VARIANT))
2476 id = id.substring(SEQUENCE_VARIANT.length());
2478 sf.setValue(ID, id);
2479 attributes.append(ID).append("=").append(id);
2480 // TODO handle other species variants JAL-2064
2481 StringBuilder link = new StringBuilder(32);
2484 link.append(desc).append(" ").append(id).append(
2485 "|http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=")
2486 .append(URLEncoder.encode(id, "UTF-8"));
2487 sf.addLink(link.toString());
2488 } catch (UnsupportedEncodingException e)
2493 String clinSig = (String) var.variant.getValue(CLINICAL_SIGNIFICANCE);
2494 if (clinSig != null)
2496 sf.setValue(CLINICAL_SIGNIFICANCE, clinSig);
2497 attributes.append(";").append(CLINICAL_SIGNIFICANCE).append("=")
2500 peptide.addSequenceFeature(sf);
2501 if (attributes.length() > 0)
2503 sf.setAttributes(attributes.toString());
2511 * Builds a map whose key is position in the protein sequence, and value is a
2512 * list of the base and all variants for each corresponding codon position
2515 * @param dnaToProtein
2518 @SuppressWarnings("unchecked")
2519 static LinkedHashMap<Integer, List<DnaVariant>[]> buildDnaVariantsMap(
2520 SequenceI dnaSeq, MapList dnaToProtein)
2523 * map from peptide position to all variants of the codon which codes for it
2524 * LinkedHashMap ensures we keep the peptide features in sequence order
2526 LinkedHashMap<Integer, List<DnaVariant>[]> variants = new LinkedHashMap<Integer, List<DnaVariant>[]>();
2528 List<SequenceFeature> dnaFeatures = dnaSeq.getFeatures()
2529 .getFeaturesByOntology(SequenceOntologyI.SEQUENCE_VARIANT);
2530 if (dnaFeatures.isEmpty())
2535 int dnaStart = dnaSeq.getStart();
2536 int[] lastCodon = null;
2537 int lastPeptidePostion = 0;
2540 * build a map of codon variations for peptides
2542 for (SequenceFeature sf : dnaFeatures)
2544 int dnaCol = sf.getBegin();
2545 if (dnaCol != sf.getEnd())
2547 // not handling multi-locus variant features
2550 int[] mapsTo = dnaToProtein.locateInTo(dnaCol, dnaCol);
2553 // feature doesn't lie within coding region
2556 int peptidePosition = mapsTo[0];
2557 List<DnaVariant>[] codonVariants = variants.get(peptidePosition);
2558 if (codonVariants == null)
2560 codonVariants = new ArrayList[CODON_LENGTH];
2561 codonVariants[0] = new ArrayList<DnaVariant>();
2562 codonVariants[1] = new ArrayList<DnaVariant>();
2563 codonVariants[2] = new ArrayList<DnaVariant>();
2564 variants.put(peptidePosition, codonVariants);
2568 * extract dna variants to a string array
2570 String alls = (String) sf.getValue("alleles");
2575 String[] alleles = alls.toUpperCase().split(",");
2577 for (String allele : alleles)
2579 alleles[i++] = allele.trim(); // lose any space characters "A, G"
2583 * get this peptide's codon positions e.g. [3, 4, 5] or [4, 7, 10]
2585 int[] codon = peptidePosition == lastPeptidePostion ? lastCodon
2586 : MappingUtils.flattenRanges(dnaToProtein.locateInFrom(
2587 peptidePosition, peptidePosition));
2588 lastPeptidePostion = peptidePosition;
2592 * save nucleotide (and any variant) for each codon position
2594 for (int codonPos = 0; codonPos < CODON_LENGTH; codonPos++)
2596 String nucleotide = String.valueOf(
2597 dnaSeq.getCharAt(codon[codonPos] - dnaStart)).toUpperCase();
2598 List<DnaVariant> codonVariant = codonVariants[codonPos];
2599 if (codon[codonPos] == dnaCol)
2601 if (!codonVariant.isEmpty()
2602 && codonVariant.get(0).variant == null)
2605 * already recorded base value, add this variant
2607 codonVariant.get(0).variant = sf;
2612 * add variant with base value
2614 codonVariant.add(new DnaVariant(nucleotide, sf));
2617 else if (codonVariant.isEmpty())
2620 * record (possibly non-varying) base value
2622 codonVariant.add(new DnaVariant(nucleotide));
2630 * Makes an alignment with a copy of the given sequences, adding in any
2631 * non-redundant sequences which are mapped to by the cross-referenced
2637 * the alignment dataset shared by the new copy
2640 public static AlignmentI makeCopyAlignment(SequenceI[] seqs,
2641 SequenceI[] xrefs, AlignmentI dataset)
2643 AlignmentI copy = new Alignment(new Alignment(seqs));
2644 copy.setDataset(dataset);
2645 boolean isProtein = !copy.isNucleotide();
2646 SequenceIdMatcher matcher = new SequenceIdMatcher(seqs);
2649 for (SequenceI xref : xrefs)
2651 DBRefEntry[] dbrefs = xref.getDBRefs();
2654 for (DBRefEntry dbref : dbrefs)
2656 if (dbref.getMap() == null || dbref.getMap().getTo() == null
2657 || dbref.getMap().getTo().isProtein() != isProtein)
2661 SequenceI mappedTo = dbref.getMap().getTo();
2662 SequenceI match = matcher.findIdMatch(mappedTo);
2665 matcher.add(mappedTo);
2666 copy.addSequence(mappedTo);
2676 * Try to align sequences in 'unaligned' to match the alignment of their
2677 * mapped regions in 'aligned'. For example, could use this to align CDS
2678 * sequences which are mapped to their parent cDNA sequences.
2680 * This method handles 1:1 mappings (dna-to-dna or protein-to-protein). For
2681 * dna-to-protein or protein-to-dna use alternative methods.
2684 * sequences to be aligned
2686 * holds aligned sequences and their mappings
2689 public static int alignAs(AlignmentI unaligned, AlignmentI aligned)
2692 * easy case - aligning a copy of aligned sequences
2694 if (alignAsSameSequences(unaligned, aligned))
2696 return unaligned.getHeight();
2700 * fancy case - aligning via mappings between sequences
2702 List<SequenceI> unmapped = new ArrayList<SequenceI>();
2703 Map<Integer, Map<SequenceI, Character>> columnMap = buildMappedColumnsMap(
2704 unaligned, aligned, unmapped);
2705 int width = columnMap.size();
2706 char gap = unaligned.getGapCharacter();
2707 int realignedCount = 0;
2708 // TODO: verify this loop scales sensibly for very wide/high alignments
2710 for (SequenceI seq : unaligned.getSequences())
2712 if (!unmapped.contains(seq))
2714 char[] newSeq = new char[width];
2715 Arrays.fill(newSeq, gap); // JBPComment - doubt this is faster than the
2716 // Integer iteration below
2721 * traverse the map to find columns populated
2724 for (Integer column : columnMap.keySet())
2726 Character c = columnMap.get(column).get(seq);
2730 * sequence has a character at this position
2740 * trim trailing gaps
2742 if (lastCol < width)
2744 char[] tmp = new char[lastCol + 1];
2745 System.arraycopy(newSeq, 0, tmp, 0, lastCol + 1);
2748 // TODO: optimise SequenceI to avoid char[]->String->char[]
2749 seq.setSequence(String.valueOf(newSeq));
2753 return realignedCount;
2757 * If unaligned and aligned sequences share the same dataset sequences, then
2758 * simply copies the aligned sequences to the unaligned sequences and returns
2759 * true; else returns false
2762 * - sequences to be aligned based on aligned
2764 * - 'guide' alignment containing sequences derived from same dataset
2768 static boolean alignAsSameSequences(AlignmentI unaligned,
2771 if (aligned.getDataset() == null || unaligned.getDataset() == null)
2773 return false; // should only pass alignments with datasets here
2776 // map from dataset sequence to alignment sequence(s)
2777 Map<SequenceI, List<SequenceI>> alignedDatasets = new HashMap<SequenceI, List<SequenceI>>();
2778 for (SequenceI seq : aligned.getSequences())
2780 SequenceI ds = seq.getDatasetSequence();
2781 if (alignedDatasets.get(ds) == null)
2783 alignedDatasets.put(ds, new ArrayList<SequenceI>());
2785 alignedDatasets.get(ds).add(seq);
2789 * first pass - check whether all sequences to be aligned share a dataset
2790 * sequence with an aligned sequence
2792 for (SequenceI seq : unaligned.getSequences())
2794 if (!alignedDatasets.containsKey(seq.getDatasetSequence()))
2801 * second pass - copy aligned sequences;
2802 * heuristic rule: pair off sequences in order for the case where
2803 * more than one shares the same dataset sequence
2805 for (SequenceI seq : unaligned.getSequences())
2807 List<SequenceI> alignedSequences = alignedDatasets
2808 .get(seq.getDatasetSequence());
2809 // TODO: getSequenceAsString() will be deprecated in the future
2810 // TODO: need to leave to SequenceI implementor to update gaps
2811 seq.setSequence(alignedSequences.get(0).getSequenceAsString());
2812 if (alignedSequences.size() > 0)
2814 // pop off aligned sequences (except the last one)
2815 alignedSequences.remove(0);
2823 * Returns a map whose key is alignment column number (base 1), and whose
2824 * values are a map of sequence characters in that column.
2831 static SortedMap<Integer, Map<SequenceI, Character>> buildMappedColumnsMap(
2832 AlignmentI unaligned, AlignmentI aligned,
2833 List<SequenceI> unmapped)
2836 * Map will hold, for each aligned column position, a map of
2837 * {unalignedSequence, characterPerSequence} at that position.
2838 * TreeMap keeps the entries in ascending column order.
2840 SortedMap<Integer, Map<SequenceI, Character>> map = new TreeMap<Integer, Map<SequenceI, Character>>();
2843 * record any sequences that have no mapping so can't be realigned
2845 unmapped.addAll(unaligned.getSequences());
2847 List<AlignedCodonFrame> mappings = aligned.getCodonFrames();
2849 for (SequenceI seq : unaligned.getSequences())
2851 for (AlignedCodonFrame mapping : mappings)
2853 SequenceI fromSeq = mapping.findAlignedSequence(seq, aligned);
2854 if (fromSeq != null)
2856 Mapping seqMap = mapping.getMappingBetween(fromSeq, seq);
2857 if (addMappedPositions(seq, fromSeq, seqMap, map))
2859 unmapped.remove(seq);
2868 * Helper method that adds to a map the mapped column positions of a sequence.
2870 * For example if aaTT-Tg-gAAA is mapped to TTTAAA then the map should record
2871 * that columns 3,4,6,10,11,12 map to characters T,T,T,A,A,A of the mapped to
2875 * the sequence whose column positions we are recording
2877 * a sequence that is mapped to the first sequence
2879 * the mapping from 'fromSeq' to 'seq'
2881 * a map to add the column positions (in fromSeq) of the mapped
2885 static boolean addMappedPositions(SequenceI seq, SequenceI fromSeq,
2886 Mapping seqMap, Map<Integer, Map<SequenceI, Character>> map)
2894 * invert mapping if it is from unaligned to aligned sequence
2896 if (seqMap.getTo() == fromSeq.getDatasetSequence())
2898 seqMap = new Mapping(seq.getDatasetSequence(),
2899 seqMap.getMap().getInverse());
2902 int toStart = seq.getStart();
2905 * traverse [start, end, start, end...] ranges in fromSeq
2907 for (int[] fromRange : seqMap.getMap().getFromRanges())
2909 for (int i = 0; i < fromRange.length - 1; i += 2)
2911 boolean forward = fromRange[i + 1] >= fromRange[i];
2914 * find the range mapped to (sequence positions base 1)
2916 int[] range = seqMap.locateMappedRange(fromRange[i],
2920 System.err.println("Error in mapping " + seqMap + " from "
2921 + fromSeq.getName());
2924 int fromCol = fromSeq.findIndex(fromRange[i]);
2925 int mappedCharPos = range[0];
2928 * walk over the 'from' aligned sequence in forward or reverse
2929 * direction; when a non-gap is found, record the column position
2930 * of the next character of the mapped-to sequence; stop when all
2931 * the characters of the range have been counted
2933 while (mappedCharPos <= range[1] && fromCol <= fromSeq.getLength()
2936 if (!Comparison.isGap(fromSeq.getCharAt(fromCol - 1)))
2939 * mapped from sequence has a character in this column
2940 * record the column position for the mapped to character
2942 Map<SequenceI, Character> seqsMap = map.get(fromCol);
2943 if (seqsMap == null)
2945 seqsMap = new HashMap<SequenceI, Character>();
2946 map.put(fromCol, seqsMap);
2948 seqsMap.put(seq, seq.getCharAt(mappedCharPos - toStart));
2951 fromCol += (forward ? 1 : -1);
2958 // strictly temporary hack until proper criteria for aligning protein to cds
2959 // are in place; this is so Ensembl -> fetch xrefs Uniprot aligns the Uniprot
2960 public static boolean looksLikeEnsembl(AlignmentI alignment)
2962 for (SequenceI seq : alignment.getSequences())
2964 String name = seq.getName();
2965 if (!name.startsWith("ENSG") && !name.startsWith("ENST"))