JAL-2069 typo
[jalview.git] / src / jalview / analysis / PCA.java
1 /*
2  * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
3  * Copyright (C) $$Year-Rel$$ The Jalview Authors
4  * 
5  * This file is part of Jalview.
6  * 
7  * Jalview is free software: you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License 
9  * as published by the Free Software Foundation, either version 3
10  * of the License, or (at your option) any later version.
11  *  
12  * Jalview is distributed in the hope that it will be useful, but 
13  * WITHOUT ANY WARRANTY; without even the implied warranty 
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
15  * PURPOSE.  See the GNU General Public License for more details.
16  * 
17  * You should have received a copy of the GNU General Public License
18  * along with Jalview.  If not, see <http://www.gnu.org/licenses/>.
19  * The Jalview Authors are detailed in the 'AUTHORS' file.
20  */
21 package jalview.analysis;
22
23 import jalview.api.analysis.ScoreModelI;
24 import jalview.api.analysis.SimilarityParamsI;
25 import jalview.datamodel.AlignmentView;
26 import jalview.math.MatrixI;
27
28 import java.io.PrintStream;
29
30 /**
31  * Performs Principal Component Analysis on given sequences
32  */
33 public class PCA implements Runnable
34 {
35   MatrixI symm;
36
37   double[] eigenvalue;
38
39   MatrixI eigenvector;
40
41   StringBuilder details = new StringBuilder(1024);
42
43   final private AlignmentView seqs;
44
45   private ScoreModelI scoreModel;
46
47   private SimilarityParamsI similarityParams;
48
49   public PCA(AlignmentView s, ScoreModelI sm, SimilarityParamsI options)
50   {
51     this.seqs = s;
52     this.similarityParams = options;
53     this.scoreModel = sm;
54
55     details.append("PCA calculation using " + sm.getName()
56             + " sequence similarity matrix\n========\n\n");
57   }
58
59   /**
60    * Returns Eigenvalue
61    * 
62    * @param i
63    *          Index of diagonal within matrix
64    * 
65    * @return Returns value of diagonal from matrix
66    */
67   public double getEigenvalue(int i)
68   {
69     return eigenvector.getD()[i];
70   }
71
72   /**
73    * DOCUMENT ME!
74    * 
75    * @param l
76    *          DOCUMENT ME!
77    * @param n
78    *          DOCUMENT ME!
79    * @param mm
80    *          DOCUMENT ME!
81    * @param factor
82    *          DOCUMENT ME!
83    * 
84    * @return DOCUMENT ME!
85    */
86   public float[][] getComponents(int l, int n, int mm, float factor)
87   {
88     float[][] out = new float[getHeight()][3];
89
90     for (int i = 0; i < getHeight(); i++)
91     {
92       out[i][0] = (float) component(i, l) * factor;
93       out[i][1] = (float) component(i, n) * factor;
94       out[i][2] = (float) component(i, mm) * factor;
95     }
96
97     return out;
98   }
99
100   /**
101    * DOCUMENT ME!
102    * 
103    * @param n
104    *          DOCUMENT ME!
105    * 
106    * @return DOCUMENT ME!
107    */
108   public double[] component(int n)
109   {
110     // n = index of eigenvector
111     double[] out = new double[getHeight()];
112
113     for (int i = 0; i < out.length; i++)
114     {
115       out[i] = component(i, n);
116     }
117
118     return out;
119   }
120
121   /**
122    * DOCUMENT ME!
123    * 
124    * @param row
125    *          DOCUMENT ME!
126    * @param n
127    *          DOCUMENT ME!
128    * 
129    * @return DOCUMENT ME!
130    */
131   double component(int row, int n)
132   {
133     double out = 0.0;
134
135     for (int i = 0; i < symm.width(); i++)
136     {
137       out += (symm.getValue(row, i) * eigenvector.getValue(i, n));
138     }
139
140     return out / eigenvector.getD()[n];
141   }
142
143   public String getDetails()
144   {
145     return details.toString();
146   }
147
148   /**
149    * DOCUMENT ME!
150    */
151   @Override
152   public void run()
153   {
154     PrintStream ps = new PrintStream(System.out)
155     {
156       @Override
157       public void print(String x)
158       {
159         details.append(x);
160       }
161
162       @Override
163       public void println()
164       {
165         details.append("\n");
166       }
167     };
168
169     // long now = System.currentTimeMillis();
170     try
171     {
172       eigenvector = scoreModel.findSimilarities(seqs, similarityParams);
173
174       details.append(" --- OrigT * Orig ---- \n");
175       eigenvector.print(ps, "%8.2f");
176
177       symm = eigenvector.copy();
178
179       eigenvector.tred();
180
181       details.append(" ---Tridiag transform matrix ---\n");
182       details.append(" --- D vector ---\n");
183       eigenvector.printD(ps, "%15.4e");
184       ps.println();
185       details.append("--- E vector ---\n");
186       eigenvector.printE(ps, "%15.4e");
187       ps.println();
188
189       // Now produce the diagonalization matrix
190       eigenvector.tqli();
191     } catch (Exception q)
192     {
193       q.printStackTrace();
194       details.append("\n*** Unexpected exception when performing PCA ***\n"
195               + q.getLocalizedMessage());
196       details.append(
197               "*** Matrices below may not be fully diagonalised. ***\n");
198     }
199
200     details.append(" --- New diagonalization matrix ---\n");
201     eigenvector.print(ps, "%8.2f");
202     details.append(" --- Eigenvalues ---\n");
203     eigenvector.printD(ps, "%15.4e");
204     ps.println();
205     /*
206      * for (int seq=0;seq<symm.rows;seq++) { ps.print("\"Seq"+seq+"\""); for
207      * (int ev=0;ev<symm.rows; ev++) {
208      * 
209      * ps.print(","+component(seq, ev)); } ps.println(); }
210      */
211     // System.out.println(("PCA.run() took "
212     // + (System.currentTimeMillis() - now) + "ms"));
213   }
214
215   /**
216    * Answers the N dimensions of the NxN PCA matrix. This is the number of
217    * sequences involved in the pairwise score calculation.
218    * 
219    * @return
220    */
221   public int getHeight()
222   {
223     // TODO can any of seqs[] be null?
224     return seqs.getSequences().length;
225   }
226 }