3 * $Date: 2007-04-05 09:07:28 -0500 (Thu, 05 Apr 2007) $
6 * Some portions of this file have been modified by Robert Hanson hansonr.at.stolaf.edu 2012-2017
7 * for use in SwingJS via transpilation into JavaScript using Java2Script.
9 * Copyright (C) 2003-2005 The Jmol Development Team
11 * Contact: jmol-developers@lists.sf.net
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
30 * Standard UNIT quaternion math -- for rotation.
32 * All rotations can be represented as two identical quaternions.
33 * This is because any rotation can be considered from either end of the
34 * rotational axis -- either as a + rotation or a - rotation. This code
35 * is designed to always maintain the quaternion with a rotation in the
38 * This ensures that the reported theta is always positive, and the normal
39 * reported is always associated with a positive theta.
41 * @author Bob Hanson, hansonr@stolaf.edu 6/2008
46 public float q0, q1, q2, q3;
49 private final static P4 qZero = new P4();
50 private static final double RAD_PER_DEG = Math.PI / 180;
56 public static Quat newQ(Quat q) {
62 public static Quat newVA(T3 v, float theta) {
68 public static Quat newM(M3 mat) {
70 q.setM(M3.newM3(mat));
74 public static Quat newAA(A4 a) {
80 public static Quat newP4(P4 pt) {
87 * Note that q0 is the last parameter here
93 * @return {q1 q2 q3 q0}
95 public static Quat new4(float q1, float q2, float q3, float q0) {
112 public void set(Quat q) {
120 * {x y z w} --> {q1 q2 q3 q0} and factored
124 private void setP4(P4 pt) {
125 float factor = (pt == null ? 0 : pt.distance4(qZero));
137 * q = (cos(theta/2), sin(theta/2) * n)
142 public void setTA(T3 pt, float theta) {
143 if (pt.x == 0 && pt.y == 0 && pt.z == 0) {
147 double fact = (Math.sin(theta / 2 * RAD_PER_DEG) / Math.sqrt(pt.x
148 * pt.x + pt.y * pt.y + pt.z * pt.z));
149 q0 = (float) (Math.cos(theta / 2 * RAD_PER_DEG));
150 q1 = (float) (pt.x * fact);
151 q2 = (float) (pt.y * fact);
152 q3 = (float) (pt.z * fact);
155 public void setAA(A4 a) {
159 setM(new M3().setAA(aa));
162 private void setM(M3 mat) {
165 * Changed 7/16/2008 to double precision for 11.5.48.
169 * RayTrace Software Package, release 3.0. May 3, 2006.
171 * Mathematics Subpackage (VrMath)
173 * Author: Samuel R. Buss
175 * Software is "as-is" and carries no warranty. It may be used without
176 * restriction, but if you modify it, please change the filenames to
177 * prevent confusion between different versions. Please acknowledge
178 * all use of the software in any publications or products based on it.
180 * Bug reports: Sam Buss, sbuss@ucsd.edu.
181 * Web page: http://math.ucsd.edu/~sbuss/MathCG
183 // Use Shepperd's algorithm, which is stable, does not lose
184 // significant precision and uses only one sqrt.
185 // J. Guidance and Control, 1 (1978) 223-224.
189 * Except, that code has errors.
191 * CORRECTIONS (as noted below) of Quaternion.cpp. I have reported the bug.
196 * cos(theta/2)^2 = (cos(theta) + 1)/2
198 * trace = (1-x^2)ct + (1-y^2)ct + (1-z^2)ct + 1 = 2cos(theta) + 1
200 * cos(theta) = (trace - 1)/2
205 * = sqrt((cos(theta)+1)/2)
206 * = sqrt((trace-1)/4+1/2)
207 * = sqrt((trace+1)/4)
210 * but there are precision issues, so we allow for other situations.
211 * note -- trace >= 0.5 when cos(theta) >= -0.25 (-104.48 <= theta <= 104.48).
212 * this code cleverly matches the precision in all four options.
218 double trace = mat.m00 + mat.m11 + mat.m22;
222 w = Math.sqrt(1.0 + trace);
223 x = (mat.m21 - mat.m12) / w;
224 y = (mat.m02 - mat.m20) / w;
225 z = (mat.m10 - mat.m01) / w;
226 } else if ((temp = mat.m00 + mat.m00 - trace) >= 0.5) {
227 x = Math.sqrt(1.0 + temp);
228 w = (mat.m21 - mat.m12) / x;
229 y = (mat.m10 + mat.m01) / x;
230 z = (mat.m20 + mat.m02) / x;
231 } else if ((temp = mat.m11 + mat.m11 - trace) >= 0.5
232 || mat.m11 > mat.m22) {
233 y = Math.sqrt(1.0 + temp);
234 w = (mat.m02 - mat.m20) / y;
235 x = (mat.m10 + mat.m01) / y;
236 z = (mat.m21 + mat.m12) / y;
238 z = Math.sqrt(1.0 + mat.m22 + mat.m22 - trace);
239 w = (mat.m10 - mat.m01) / z;
240 x = (mat.m20 + mat.m02) / z; // was -
241 y = (mat.m21 + mat.m12) / z; // was -
244 q0 = (float) (w * 0.5);
245 q1 = (float) (x * 0.5);
246 q2 = (float) (y * 0.5);
247 q3 = (float) (z * 0.5);
250 * Originally from http://www.gamedev.net/community/forums/topic.asp?topic_id=448380
251 * later algorithm was adapted from Visualizing Quaternions, by Andrew J. Hanson
252 * (Morgan Kaufmann, 2006), page 446
254 * HOWEVER, checking with AxisAngle4f and Quat4f equivalents, it was found that
255 * BOTH of these sources produce inverted quaternions. So here we do an inversion.
257 * This correction was made in 11.5.42 6/19/2008 -- Bob Hanson
259 * former algorithm used:
262 double tr = mat.m00 + mat.m11 + mat.m22; //Matrix trace
264 double[] q = new double[4];
266 s = Math.sqrt(tr + 1);
267 q0 = (float) (0.5 * s);
268 s = 0.5 / s; // = 1/q0
269 q1 = (float) ((mat.m21 - mat.m12) * s);
270 q2 = (float) ((mat.m02 - mat.m20) * s);
271 q3 = (float) ((mat.m10 - mat.m01) * s);
273 float[][] m = new float[][] { new float[3], new float[3], new float[3] };
278 //Find out the biggest element along the diagonal
279 float max = Math.max(mat.m11, mat.m00);
280 int i = (mat.m22 > max ? 2 : max == mat.m11 ? 1 : 0);
283 s = -Math.sqrt(1 + m[i][i] - m[j][j] - m[k][k]);
284 // 0 = 1 + (1-x^2)ct + x^2 -(1-y^2)ct - y^2 - (1-z^2)ct - z^2
285 // 0 = 1 - ct + (x^2 - y^2 - z^2) - (x^2 - y^2 - z^2)ct
286 // 0 = 1 - ct + 2x^2 - 1 - (2x^2)ct + ct
288 // theta = 0 (but then trace = 1 + 1 + 1 = 3)
292 s = 0.5 / s; // = 1/q[i]
293 q[j] = (m[i][j] + m[j][i]) * s;
294 q[k] = (m[i][k] + m[k][i]) * s;
295 q0 = (float) ((m[k][j] - m[j][k]) * s);
296 q1 = (float) q[0]; // x
297 q2 = (float) q[1]; // y
298 q3 = (float) q[2]; // z
305 * if qref is null, "fix" this quaternion
306 * otherwise, return a quaternion that is CLOSEST to the given quaternion
307 * that is, one that gives a positive dot product
310 public void setRef(Quat qref) {
324 * returns a quaternion frame based on three points (center, x, and any point in xy plane)
325 * or two vectors (vA, vB).
327 * @param center (null for vA/vB option)
330 * @return quaternion for frame
332 public static final Quat getQuaternionFrame(P3 center, T3 x,
336 if (center != null) {
340 return getQuaternionFrameV(vA, vB, null, false);
344 * Create a quaternion based on a frame
351 public static final Quat getQuaternionFrameV(V3 vA, V3 vB,
352 V3 vC, boolean yBased) {
359 V3 vBprime = new V3();
360 vBprime.cross(vC, vA);
365 mat.setColumnV(0, vA);
366 mat.setColumnV(1, vBprime);
367 mat.setColumnV(2, vC);
371 * Verification tests using Quat4f and AngleAxis4f:
373 System.out.println("quaternion frame matrix: " + mat);
375 Point3f pt2 = new Point3f();
376 mat.transform(Point3f.new3(1, 0, 0), pt2);
377 System.out.println("vA=" + vA + " M(100)=" + pt2);
378 mat.transform(Point3f.new3(0, 1, 0), pt2);
379 System.out.println("vB'=" + vBprime + " M(010)=" + pt2);
380 mat.transform(Point3f.new3(0, 0, 1), pt2);
381 System.out.println("vC=" + vC + " M(001)=" + pt2);
382 Quat4f q4 = new Quat4f();
384 System.out.println("----");
385 System.out.println("Quat4f: {" + q4.w + " " + q4.x + " " + q4.y + " " + q4.z + "}");
386 System.out.println("Quat4f: 2xy + 2wz = m10: " + (2 * q4.x * q4.y + 2 * q4.w * q4.z) + " = " + mat.m10);
393 System.out.println("Quaternion mat from q \n" + q.getMatrix());
394 System.out.println("Quaternion: " + q.getNormal() + " " + q.getTheta());
395 AxisAngle4f a = new AxisAngle4f();
397 Vector3f v = Vector3f.new3(a.x, a.y, a.z);
399 System.out.println("angleAxis: " + v + " "+(a.angle/Math.PI * 180));
405 public M3 getMatrix() {
411 private void setMatrix() {
413 // q0 = w, q1 = x, q2 = y, q3 = z
414 mat.m00 = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3;
415 mat.m01 = 2 * q1 * q2 - 2 * q0 * q3;
416 mat.m02 = 2 * q1 * q3 + 2 * q0 * q2;
417 mat.m10 = 2 * q1 * q2 + 2 * q0 * q3;
418 mat.m11 = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3;
419 mat.m12 = 2 * q2 * q3 - 2 * q0 * q1;
420 mat.m20 = 2 * q1 * q3 - 2 * q0 * q2;
421 mat.m21 = 2 * q2 * q3 + 2 * q0 * q1;
422 mat.m22 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
425 public Quat add(float x) {
426 // scalar theta addition (degrees)
427 return newVA(getNormal(), getTheta() + x);
430 public Quat mul(float x) {
431 // scalar theta multiplication
432 return (x == 1 ? new4(q1, q2, q3, q0) :
433 newVA(getNormal(), getTheta() * x));
436 public Quat mulQ(Quat p) {
438 q0 * p.q1 + q1 * p.q0 + q2 * p.q3 - q3 * p.q2,
439 q0 * p.q2 + q2 * p.q0 + q3 * p.q1 - q1 * p.q3,
440 q0 * p.q3 + q3 * p.q0 + q1 * p.q2 - q2 * p.q1,
441 q0 * p.q0 - q1 * p.q1 - q2 * p.q2 - q3 * p.q3);
444 public Quat div(Quat p) {
445 // unit quaternions assumed -- otherwise would scale by 1/p.dot(p)
446 return mulQ(p.inv());
449 public Quat divLeft(Quat p) {
450 // unit quaternions assumed -- otherwise would scale by 1/p.dot(p)
451 return this.inv().mulQ(p);
454 public float dot(Quat q) {
455 return this.q0 * q.q0 + this.q1 * q.q1 + this.q2 * q.q2 + this.q3 * q.q3;
459 return new4(-q1, -q2, -q3, q0);
462 public Quat negate() {
463 return new4(-q1, -q2, -q3, -q0);
471 * 2) q0 = 0 and q1 > 0
473 * 3) q0 = 0 and q1 = 0 and q2 > 0
475 * 4) q0 = 0 and q1 = 0 and q2 = 0 and q3 > 0
481 private float getFixFactor() {
483 q0 == 0 && (q1 < 0 || q1 == 0 && (q2 < 0 || q2 == 0 && q3 < 0)) ? -1 : 1);
486 public V3 getVector(int i) {
487 return getVectorScaled(i, 1f);
490 public V3 getVectorScaled(int i, float scale) {
492 scale *= getFixFactor();
493 return V3.new3(q1 * scale, q2 * scale, q3 * scale);
498 mat.getColumnV(i, v);
506 * @return vector such that 0 <= angle <= 180
508 public V3 getNormal() {
509 V3 v = getRawNormal(this);
510 v.scale(getFixFactor());
514 private static V3 getRawNormal(Quat q) {
515 V3 v = V3.new3(q.q1, q.q2, q.q3);
517 return V3.new3(0, 0, 1);
524 * @return 0 <= angle <= 180 in degrees
526 public float getTheta() {
527 return (float) (Math.acos(Math.abs(q0)) * 2 * 180 / Math.PI);
530 public float getThetaRadians() {
531 return (float) (Math.acos(Math.abs(q0)) * 2);
537 * @return vector option closest to v0
540 public V3 getNormalDirected(V3 v0) {
542 if (v.x * v0.x + v.y * v0.y + v.z * v0.z < 0) {
548 public V3 get3dProjection(V3 v3d) {
556 * @return fill in theta of axisAngle such that
558 public P4 getThetaDirected(P4 axisAngle) {
560 float theta = getTheta();
562 if (axisAngle.x * q1 + axisAngle.y * q2 + axisAngle.z * q3 < 0) {
566 axisAngle.set4(v.x, v.y, v.z, theta);
572 * @param vector a vector, same as for getNormalDirected
573 * @return return theta
575 public float getThetaDirectedV(V3 vector) {
577 float theta = getTheta();
579 if (vector.x * q1 + vector.y * q2 + vector.z * q3 < 0) {
587 * Quaternions are saved as {q1, q2, q3, q0}
589 * While this may seem odd, it is so that for any point4 --
590 * planes, axisangles, and quaternions -- we can use the
591 * first three coordinates to determine the relavent axis
592 * the fourth then gives us offset to {0,0,0} (plane),
593 * rotation angle (axisangle), and cos(theta/2) (quaternion).
594 * @return {x y z w} (unnormalized)
596 public P4 toPoint4f() {
597 return P4.new4(q1, q2, q3, q0); // x,y,z,w
600 public A4 toAxisAngle4f() {
601 double theta = 2 * Math.acos(Math.abs(q0));
602 double sinTheta2 = Math.sin(theta/2);
606 theta = Math.PI - theta;
608 return A4.newVA(v, (float) theta);
611 public T3 transform2(T3 pt, T3 ptNew) {
614 mat.rotate2(pt, ptNew);
618 public Quat leftDifference(Quat q2) {
619 //dq = q.leftDifference(qnext);//q.inv().mul(qnext);
620 Quat q2adjusted = (this.dot(q2) < 0 ? q2.negate() : q2);
621 return inv().mulQ(q2adjusted);
624 public Quat rightDifference(Quat q2) {
625 //dq = qnext.rightDifference(q);//qnext.mul(q.inv());
626 Quat q2adjusted = (this.dot(q2) < 0 ? q2.negate() : q2);
627 return mulQ(q2adjusted.inv());
632 * Java axisAngle / plane / Point4f format
633 * all have the format {x y z w}
634 * so we go with that here as well
636 * @return "{q1 q2 q3 q0}"
639 public String toString() {
640 return "{" + q1 + " " + q2 + " " + q3 + " " + q0 + "}";
647 * @param nMax > 0 --> limit to this number
650 * @return pairwise array of data1 / data2 or data1 \ data2
652 public static Quat[] div(Quat[] data1, Quat[] data2, int nMax, boolean isRelative) {
654 if (data1 == null || data2 == null || (n = Math.min(data1.length, data2.length)) == 0)
656 if (nMax > 0 && n > nMax)
658 Quat[] dqs = new Quat[n];
659 for (int i = 0; i < n; i++) {
660 if (data1[i] == null || data2[i] == null)
662 dqs[i] = (isRelative ? data1[i].divLeft(data2[i]) : data1[i].div(data2[i]));
667 public static Quat sphereMean(Quat[] data, float[] retStddev, float criterion) {
668 // Samuel R. Buss, Jay P. Fillmore:
669 // Spherical averages and applications to spherical splines and interpolation.
670 // ACM Trans. Graph. 20(2): 95-126 (2001)
671 if (data == null || data.length == 0)
673 if (retStddev == null)
674 retStddev = new float[1];
675 if (data.length == 1) {
677 return newQ(data[0]);
679 float diff = Float.MAX_VALUE;
680 float lastStddev = Float.MAX_VALUE;
681 Quat qMean = simpleAverage(data);
682 int maxIter = 100; // typically goes about 5 iterations
684 while (diff > criterion && lastStddev != 0 && iter < maxIter) {
685 qMean = newMean(data, qMean);
686 retStddev[0] = stdDev(data, qMean);
687 diff = Math.abs(retStddev[0] - lastStddev);
688 lastStddev = retStddev[0];
689 //Logger.info(++iter + " sphereMean " + qMean + " stddev=" + lastStddev + " diff=" + diff);
695 * Just a starting point.
696 * get average normal vector
697 * scale normal by average projection of vectors onto it
698 * create quaternion from this 3D projection
701 * @return approximate average
703 private static Quat simpleAverage(Quat[] ndata) {
704 V3 mean = V3.new3(0, 0, 1);
705 // using the directed normal ensures that the mean is
706 // continually added to and never subtracted from
707 V3 v = ndata[0].getNormal();
709 for (int i = ndata.length; --i >= 0;)
710 mean.add(ndata[i].getNormalDirected(mean));
714 // the 3D projection of the quaternion is [sin(theta/2)]*n
715 // so dotted with the normalized mean gets us an approximate average for sin(theta/2)
716 for (int i = ndata.length; --i >= 0;)
717 f += Math.abs(ndata[i].get3dProjection(v).dot(mean));
719 mean.scale(f / ndata.length);
720 // now convert f to the corresponding cosine instead of sine
721 f = (float) Math.sqrt(1 - mean.lengthSquared());
724 return newP4(P4.new4(mean.x, mean.y, mean.z, f));
727 private static Quat newMean(Quat[] data, Quat mean) {
728 /* quaternion derivatives nicely take care of producing the necessary
729 * metric. Since dq gives us the normal with the smallest POSITIVE angle,
730 * we just scale by that -- using degrees.
731 * No special normalization is required.
733 * The key is that the mean has been set up already, and dq.getTheta()
734 * will always return a value between 0 and 180. True, for groupings
735 * where dq swings wildly -- 178, 182, 178, for example -- there will
736 * be problems, but the presumption here is that there is a REASONABLE
737 * set of data. Clearly there are spherical data sets that simply cannot
738 * be assigned a mean. (For example, where the three projected points
739 * are equally distant on the sphere. We just can't worry about those
740 * cases here. Rather, if there is any significance to the data,
741 * there will be clusters of projected points, and the analysis will
744 * Note that the hemisphere problem drops out because dq.getNormal() and
745 * dq.getTheta() will never return (n, 182 degrees) but will
746 * instead return (-n, 2 degrees). That's just what we want in that case.
748 * Note that the projection in this case is to 3D -- a set of vectors
749 * in space with lengths proportional to theta (not the sin(theta/2)
750 * that is associated with a quaternion map).
752 * This is officially an "exponential" or "hyperbolic" projection.
758 //System.out.println("newMean mean " + mean);
759 for (int i = data.length; --i >= 0;) {
763 v.scale(dq.getTheta());
766 sum.scale(1f/data.length);
767 Quat dqMean = newVA(sum, sum.length());
768 //System.out.println("newMean dqMean " + dqMean + " " + dqMean.getNormal() + " " + dqMean.getTheta());
769 return dqMean.mulQ(mean);
775 * @return standard deviation in units of degrees
777 private static float stdDev(Quat[] data, Quat mean) {
778 // the quaternion dot product gives q0 for dq (i.e. q / mean)
779 // that is, cos(theta/2) for theta between them
782 for (int i = n; --i >= 0;) {
783 float theta = data[i].div(mean).getTheta();
784 sum2 += theta * theta;
786 return (float) Math.sqrt(sum2 / n);
789 public float[] getEulerZYZ() {
790 // http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf
792 if (q1 == 0 && q2 == 0) {
793 float theta = getTheta();
794 // pure Z rotation - ambiguous
795 return new float[] { q3 < 0 ? -theta : theta , 0, 0 };
797 rA = Math.atan2(2 * (q2 * q3 + q0 * q1), 2 * (-q1 * q3 + q0 * q2 ));
798 rB = Math.acos(q3 * q3 - q2 * q2 - q1 * q1 + q0 * q0);
799 rG = Math.atan2( 2 * (q2 * q3 - q0 * q1), 2 * (q0 * q2 + q1 * q3));
800 return new float[] {(float) (rA / RAD_PER_DEG), (float) (rB / RAD_PER_DEG), (float) (rG / RAD_PER_DEG)};
803 public float[] getEulerZXZ() {
804 // NOT http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
805 // http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf
807 if (q1 == 0 && q2 == 0) {
808 float theta = getTheta();
809 // pure Z rotation - ambiguous
810 return new float[] { q3 < 0 ? -theta : theta , 0, 0 };
812 rA = Math.atan2(2 * (q1 * q3 - q0 * q2), 2 * (q0 * q1 + q2 * q3 ));
813 rB = Math.acos(q3 * q3 - q2 * q2 - q1 * q1 + q0 * q0);
814 rG = Math.atan2( 2 * (q1 * q3 + q0 * q2), 2 * (-q2 * q3 + q0 * q1));
815 return new float[] {(float) (rA / RAD_PER_DEG), (float) (rB / RAD_PER_DEG), (float) (rG / RAD_PER_DEG)};