domain + go output work begins
[jalview.git] / forester / java / src / org / forester / phylogeny / PhylogenyMethods.java
index a042cee..459138b 100644 (file)
-// $Id:
-// FORESTER -- software libraries and applications
-// for evolutionary biology research and applications.
-//
-// Copyright (C) 2008-2009 Christian M. Zmasek
-// Copyright (C) 2008-2009 Burnham Institute for Medical Research
-// All rights reserved
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License along with this library; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
-//
-// Contact: phylosoft @ gmail . com
-// WWW: www.phylosoft.org/forester
-
-package org.forester.phylogeny;
-
-import java.awt.Color;
-import java.io.File;
-import java.io.IOException;
-import java.util.ArrayList;
-import java.util.Arrays;
-import java.util.Collections;
-import java.util.Comparator;
-import java.util.HashSet;
-import java.util.Iterator;
-import java.util.List;
-import java.util.Set;
-import java.util.SortedMap;
-import java.util.TreeMap;
-
-import org.forester.io.parsers.PhylogenyParser;
-import org.forester.io.parsers.phyloxml.PhyloXmlUtil;
-import org.forester.io.parsers.util.PhylogenyParserException;
-import org.forester.phylogeny.data.BranchColor;
-import org.forester.phylogeny.data.BranchWidth;
-import org.forester.phylogeny.data.Confidence;
-import org.forester.phylogeny.data.DomainArchitecture;
-import org.forester.phylogeny.data.Identifier;
-import org.forester.phylogeny.data.PhylogenyDataUtil;
-import org.forester.phylogeny.data.Sequence;
-import org.forester.phylogeny.data.Taxonomy;
-import org.forester.phylogeny.factories.ParserBasedPhylogenyFactory;
-import org.forester.phylogeny.factories.PhylogenyFactory;
-import org.forester.phylogeny.iterators.PhylogenyNodeIterator;
-import org.forester.util.BasicDescriptiveStatistics;
-import org.forester.util.DescriptiveStatistics;
-import org.forester.util.FailedConditionCheckException;
-import org.forester.util.ForesterUtil;
-
-public class PhylogenyMethods {
-
-    private static PhylogenyMethods _instance      = null;
-    private final Set<Integer>      _temp_hash_set = new HashSet<Integer>();
-    private PhylogenyNode           _farthest_1    = null;
-    private PhylogenyNode           _farthest_2    = null;
-
-    private PhylogenyMethods() {
-        // Hidden constructor.
-    }
-
-    /**
-     * Calculates the distance between PhylogenyNodes node1 and node2.
-     * 
-     * 
-     * @param node1
-     * @param node2
-     * @return distance between node1 and node2
-     */
-    public double calculateDistance( final PhylogenyNode node1, final PhylogenyNode node2 ) {
-        final PhylogenyNode lca = obtainLCA( node1, node2 );
-        final PhylogenyNode n1 = node1;
-        final PhylogenyNode n2 = node2;
-        return ( PhylogenyMethods.getDistance( n1, lca ) + PhylogenyMethods.getDistance( n2, lca ) );
-    }
-
-    public double calculateFurthestDistance( final Phylogeny phylogeny ) {
-        if ( phylogeny.getNumberOfExternalNodes() < 2 ) {
-            return 0.0;
-        }
-        _farthest_1 = null;
-        _farthest_2 = null;
-        PhylogenyNode node_1 = null;
-        PhylogenyNode node_2 = null;
-        double farthest_d = -Double.MAX_VALUE;
-        final PhylogenyMethods methods = PhylogenyMethods.getInstance();
-        final List<PhylogenyNode> ext_nodes = phylogeny.getRoot().getAllExternalDescendants();
-        for( int i = 1; i < ext_nodes.size(); ++i ) {
-            for( int j = 0; j < i; ++j ) {
-                final double d = methods.calculateDistance( ext_nodes.get( i ), ext_nodes.get( j ) );
-                if ( d < 0.0 ) {
-                    throw new RuntimeException( "distance cannot be negative" );
-                }
-                if ( d > farthest_d ) {
-                    farthest_d = d;
-                    node_1 = ext_nodes.get( i );
-                    node_2 = ext_nodes.get( j );
-                }
-            }
-        }
-        _farthest_1 = node_1;
-        _farthest_2 = node_2;
-        return farthest_d;
-    }
-
-    @Override
-    public Object clone() throws CloneNotSupportedException {
-        throw new CloneNotSupportedException();
-    }
-
-    public PhylogenyNode getFarthestNode1() {
-        return _farthest_1;
-    }
-
-    public PhylogenyNode getFarthestNode2() {
-        return _farthest_2;
-    }
-
-    /**
-     * Returns the LCA of PhylogenyNodes node1 and node2.
-     * 
-     * 
-     * @param node1
-     * @param node2
-     * @return LCA of node1 and node2
-     */
-    public PhylogenyNode obtainLCA( final PhylogenyNode node1, final PhylogenyNode node2 ) {
-        _temp_hash_set.clear();
-        PhylogenyNode n1 = node1;
-        PhylogenyNode n2 = node2;
-        _temp_hash_set.add( n1.getId() );
-        while ( !n1.isRoot() ) {
-            n1 = n1.getParent();
-            _temp_hash_set.add( n1.getId() );
-        }
-        while ( !_temp_hash_set.contains( n2.getId() ) && !n2.isRoot() ) {
-            n2 = n2.getParent();
-        }
-        if ( !_temp_hash_set.contains( n2.getId() ) ) {
-            throw new IllegalArgumentException( "attempt to get LCA of two nodes which do not share a common root" );
-        }
-        return n2;
-    }
-
-    /**
-     * Returns all orthologs of the external PhylogenyNode n of this Phylogeny.
-     * Orthologs are returned as List of node references.
-     * <p>
-     * PRECONDITION: This tree must be binary and rooted, and speciation -
-     * duplication need to be assigned for each of its internal Nodes.
-     * <p>
-     * Returns null if this Phylogeny is empty or if n is internal.
-     * @param n
-     *            external PhylogenyNode whose orthologs are to be returned
-     * @return Vector of references to all orthologous Nodes of PhylogenyNode n
-     *         of this Phylogeny, null if this Phylogeny is empty or if n is
-     *         internal
-     */
-    public List<PhylogenyNode> getOrthologousNodes( final Phylogeny phy, final PhylogenyNode node ) {
-        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();
-        final PhylogenyNodeIterator it = phy.iteratorExternalForward();
-        while ( it.hasNext() ) {
-            final PhylogenyNode temp_node = it.next();
-            if ( ( temp_node != node ) && isAreOrthologous( node, temp_node ) ) {
-                nodes.add( temp_node );
-            }
-        }
-        return nodes;
-    }
-
-    public boolean isAreOrthologous( final PhylogenyNode node1, final PhylogenyNode node2 ) {
-        return !obtainLCA( node1, node2 ).isDuplication();
-    }
-
-    public final static Phylogeny[] readPhylogenies( final PhylogenyParser parser, final File file ) throws IOException {
-        final PhylogenyFactory factory = ParserBasedPhylogenyFactory.getInstance();
-        final Phylogeny[] trees = factory.create( file, parser );
-        if ( ( trees == null ) || ( trees.length == 0 ) ) {
-            throw new PhylogenyParserException( "Unable to parse phylogeny from file: " + file );
-        }
-        return trees;
-    }
-
-    final static public void transferInternalNodeNamesToConfidence( final Phylogeny phy ) {
-        final PhylogenyNodeIterator it = phy.iteratorPostorder();
-        while ( it.hasNext() ) {
-            final PhylogenyNode n = it.next();
-            if ( !n.isExternal() && !n.getBranchData().isHasConfidences() ) {
-                if ( !ForesterUtil.isEmpty( n.getName() ) ) {
-                    double d = -1.0;
-                    try {
-                        d = Double.parseDouble( n.getName() );
-                    }
-                    catch ( final Exception e ) {
-                        d = -1.0;
-                    }
-                    if ( d >= 0.0 ) {
-                        n.getBranchData().addConfidence( new Confidence( d, "" ) );
-                        n.setName( "" );
-                    }
-                }
-            }
-        }
-    }
-
-    final static public void transferInternalNamesToBootstrapSupport( final Phylogeny phy ) {
-        final PhylogenyNodeIterator it = phy.iteratorPostorder();
-        while ( it.hasNext() ) {
-            final PhylogenyNode n = it.next();
-            if ( !n.isExternal() && !ForesterUtil.isEmpty( n.getName() ) ) {
-                double value = -1;
-                try {
-                    value = Double.parseDouble( n.getName() );
-                }
-                catch ( final NumberFormatException e ) {
-                    throw new IllegalArgumentException( "failed to parse number from [" + n.getName() + "]: "
-                            + e.getLocalizedMessage() );
-                }
-                if ( value >= 0.0 ) {
-                    n.getBranchData().addConfidence( new Confidence( value, "bootstrap" ) );
-                    n.setName( "" );
-                }
-            }
-        }
-    }
-
-    final static public void sortNodeDescendents( final PhylogenyNode node, final DESCENDANT_SORT_PRIORITY pri ) {
-        class PhylogenyNodeSortTaxonomyPriority implements Comparator<PhylogenyNode> {
-
-            @Override
-            public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {
-                if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getTaxonomyCode()
-                                .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getCommonName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getCommonName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getCommonName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getCommonName().toLowerCase() );
-                    }
-                }
-                if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {
-                        return n1.getNodeData().getSequence().getName().toLowerCase()
-                                .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {
-                        return n1.getNodeData().getSequence().getSymbol()
-                                .compareTo( n2.getNodeData().getSequence().getSymbol() );
-                    }
-                    if ( ( n1.getNodeData().getSequence().getAccession() != null )
-                            && ( n2.getNodeData().getSequence().getAccession() != null )
-                            && !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getAccession().getValue() )
-                            && !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getAccession().getValue() ) ) {
-                        return n1.getNodeData().getSequence().getAccession().getValue()
-                                .compareTo( n2.getNodeData().getSequence().getAccession().getValue() );
-                    }
-                }
-                if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {
-                    return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );
-                }
-                return 0;
-            }
-        }
-        class PhylogenyNodeSortSequencePriority implements Comparator<PhylogenyNode> {
-
-            @Override
-            public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {
-                if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {
-                        return n1.getNodeData().getSequence().getName().toLowerCase()
-                                .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {
-                        return n1.getNodeData().getSequence().getSymbol()
-                                .compareTo( n2.getNodeData().getSequence().getSymbol() );
-                    }
-                    if ( ( n1.getNodeData().getSequence().getAccession() != null )
-                            && ( n2.getNodeData().getSequence().getAccession() != null )
-                            && !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getAccession().getValue() )
-                            && !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getAccession().getValue() ) ) {
-                        return n1.getNodeData().getSequence().getAccession().getValue()
-                                .compareTo( n2.getNodeData().getSequence().getAccession().getValue() );
-                    }
-                }
-                if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getTaxonomyCode()
-                                .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getCommonName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getCommonName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getCommonName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getCommonName().toLowerCase() );
-                    }
-                }
-                if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {
-                    return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );
-                }
-                return 0;
-            }
-        }
-        class PhylogenyNodeSortNodeNamePriority implements Comparator<PhylogenyNode> {
-
-            @Override
-            public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {
-                if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {
-                    return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );
-                }
-                if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getTaxonomyCode()
-                                .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getCommonName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getCommonName() ) ) ) {
-                        return n1.getNodeData().getTaxonomy().getCommonName().toLowerCase()
-                                .compareTo( n2.getNodeData().getTaxonomy().getCommonName().toLowerCase() );
-                    }
-                }
-                if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {
-                        return n1.getNodeData().getSequence().getName().toLowerCase()
-                                .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );
-                    }
-                    if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )
-                            && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {
-                        return n1.getNodeData().getSequence().getSymbol()
-                                .compareTo( n2.getNodeData().getSequence().getSymbol() );
-                    }
-                    if ( ( n1.getNodeData().getSequence().getAccession() != null )
-                            && ( n2.getNodeData().getSequence().getAccession() != null )
-                            && !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getAccession().getValue() )
-                            && !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getAccession().getValue() ) ) {
-                        return n1.getNodeData().getSequence().getAccession().getValue()
-                                .compareTo( n2.getNodeData().getSequence().getAccession().getValue() );
-                    }
-                }
-                return 0;
-            }
-        }
-        Comparator<PhylogenyNode> c;
-        switch ( pri ) {
-            case SEQUENCE:
-                c = new PhylogenyNodeSortSequencePriority();
-                break;
-            case NODE_NAME:
-                c = new PhylogenyNodeSortNodeNamePriority();
-                break;
-            default:
-                c = new PhylogenyNodeSortTaxonomyPriority();
-        }
-        final List<PhylogenyNode> descs = node.getDescendants();
-        Collections.sort( descs, c );
-        int i = 0;
-        for( final PhylogenyNode desc : descs ) {
-            node.setChildNode( i++, desc );
-        }
-    }
-
-    final static public void transferNodeNameToField( final Phylogeny phy,
-                                                      final PhylogenyMethods.PhylogenyNodeField field ) {
-        final PhylogenyNodeIterator it = phy.iteratorPostorder();
-        while ( it.hasNext() ) {
-            final PhylogenyNode n = it.next();
-            final String name = n.getName().trim();
-            if ( !ForesterUtil.isEmpty( name ) ) {
-                switch ( field ) {
-                    case TAXONOMY_CODE:
-                        //temp hack
-                        //                        if ( name.length() > 5 ) {
-                        //                            n.setName( "" );
-                        //                            if ( !n.getNodeData().isHasTaxonomy() ) {
-                        //                                n.getNodeData().setTaxonomy( new Taxonomy() );
-                        //                            }
-                        //                            n.getNodeData().getTaxonomy().setScientificName( name );
-                        //                            break;
-                        //                        }
-                        //
-                        n.setName( "" );
-                        setTaxonomyCode( n, name );
-                        break;
-                    case TAXONOMY_SCIENTIFIC_NAME:
-                        n.setName( "" );
-                        if ( !n.getNodeData().isHasTaxonomy() ) {
-                            n.getNodeData().setTaxonomy( new Taxonomy() );
-                        }
-                        n.getNodeData().getTaxonomy().setScientificName( name );
-                        break;
-                    case TAXONOMY_COMMON_NAME:
-                        n.setName( "" );
-                        if ( !n.getNodeData().isHasTaxonomy() ) {
-                            n.getNodeData().setTaxonomy( new Taxonomy() );
-                        }
-                        n.getNodeData().getTaxonomy().setCommonName( name );
-                        break;
-                    case SEQUENCE_SYMBOL:
-                        n.setName( "" );
-                        if ( !n.getNodeData().isHasSequence() ) {
-                            n.getNodeData().setSequence( new Sequence() );
-                        }
-                        n.getNodeData().getSequence().setSymbol( name );
-                        break;
-                    case SEQUENCE_NAME:
-                        n.setName( "" );
-                        if ( !n.getNodeData().isHasSequence() ) {
-                            n.getNodeData().setSequence( new Sequence() );
-                        }
-                        n.getNodeData().getSequence().setName( name );
-                        break;
-                    case TAXONOMY_ID_UNIPROT_1: {
-                        if ( !n.getNodeData().isHasTaxonomy() ) {
-                            n.getNodeData().setTaxonomy( new Taxonomy() );
-                        }
-                        String id = name;
-                        final int i = name.indexOf( '_' );
-                        if ( i > 0 ) {
-                            id = name.substring( 0, i );
-                        }
-                        else {
-                            n.setName( "" );
-                        }
-                        n.getNodeData().getTaxonomy()
-                                .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) );
-                        break;
-                    }
-                    case TAXONOMY_ID_UNIPROT_2: {
-                        if ( !n.getNodeData().isHasTaxonomy() ) {
-                            n.getNodeData().setTaxonomy( new Taxonomy() );
-                        }
-                        String id = name;
-                        final int i = name.indexOf( '_' );
-                        if ( i > 0 ) {
-                            id = name.substring( i + 1, name.length() );
-                        }
-                        else {
-                            n.setName( "" );
-                        }
-                        n.getNodeData().getTaxonomy()
-                                .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) );
-                        break;
-                    }
-                }
-            }
-        }
-    }
-
-    static double addPhylogenyDistances( final double a, final double b ) {
-        if ( ( a >= 0.0 ) && ( b >= 0.0 ) ) {
-            return a + b;
-        }
-        else if ( a >= 0.0 ) {
-            return a;
-        }
-        else if ( b >= 0.0 ) {
-            return b;
-        }
-        return PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT;
-    }
-
-    // Helper for getUltraParalogousNodes( PhylogenyNode ).
-    public static boolean areAllChildrenDuplications( final PhylogenyNode n ) {
-        if ( n.isExternal() ) {
-            return false;
-        }
-        else {
-            if ( n.isDuplication() ) {
-                //FIXME test me!
-                for( final PhylogenyNode desc : n.getDescendants() ) {
-                    if ( !areAllChildrenDuplications( desc ) ) {
-                        return false;
-                    }
-                }
-                return true;
-            }
-            else {
-                return false;
-            }
-        }
-    }
-
-    public static int calculateDepth( final PhylogenyNode node ) {
-        PhylogenyNode n = node;
-        int steps = 0;
-        while ( !n.isRoot() ) {
-            steps++;
-            n = n.getParent();
-        }
-        return steps;
-    }
-
-    public static double calculateDistanceToRoot( final PhylogenyNode node ) {
-        PhylogenyNode n = node;
-        double d = 0.0;
-        while ( !n.isRoot() ) {
-            if ( n.getDistanceToParent() > 0.0 ) {
-                d += n.getDistanceToParent();
-            }
-            n = n.getParent();
-        }
-        return d;
-    }
-
-    public static short calculateMaxBranchesToLeaf( final PhylogenyNode node ) {
-        if ( node.isExternal() ) {
-            return 0;
-        }
-        short max = 0;
-        for( PhylogenyNode d : node.getAllExternalDescendants() ) {
-            short steps = 0;
-            while ( d != node ) {
-                if ( d.isCollapse() ) {
-                    steps = 0;
-                }
-                else {
-                    steps++;
-                }
-                d = d.getParent();
-            }
-            if ( max < steps ) {
-                max = steps;
-            }
-        }
-        return max;
-    }
-
-    public static int calculateMaxDepth( final Phylogeny phy ) {
-        int max = 0;
-        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            final int steps = calculateDepth( node );
-            if ( steps > max ) {
-                max = steps;
-            }
-        }
-        return max;
-    }
-
-    public static double calculateMaxDistanceToRoot( final Phylogeny phy ) {
-        double max = 0.0;
-        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            final double d = calculateDistanceToRoot( node );
-            if ( d > max ) {
-                max = d;
-            }
-        }
-        return max;
-    }
-
-    public static DescriptiveStatistics calculatNumberOfDescendantsPerNodeStatistics( final Phylogeny phy ) {
-        final DescriptiveStatistics stats = new BasicDescriptiveStatistics();
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            final PhylogenyNode n = iter.next();
-            if ( !n.isExternal() ) {
-                stats.addValue( n.getNumberOfDescendants() );
-            }
-        }
-        return stats;
-    }
-
-    public static DescriptiveStatistics calculatConfidenceStatistics( final Phylogeny phy ) {
-        final DescriptiveStatistics stats = new BasicDescriptiveStatistics();
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            final PhylogenyNode n = iter.next();
-            if ( !n.isExternal() ) {
-                if ( n.getBranchData().isHasConfidences() ) {
-                    stats.addValue( n.getBranchData().getConfidence( 0 ).getValue() );
-                }
-            }
-        }
-        return stats;
-    }
-
-    /**
-     * Returns the set of distinct taxonomies of
-     * all external nodes of node.
-     * If at least one the external nodes has no taxonomy,
-     * null is returned.
-     * 
-     */
-    public static Set<Taxonomy> obtainDistinctTaxonomies( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = node.getAllExternalDescendants();
-        final Set<Taxonomy> tax_set = new HashSet<Taxonomy>();
-        for( final PhylogenyNode n : descs ) {
-            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {
-                return null;
-            }
-            tax_set.add( n.getNodeData().getTaxonomy() );
-        }
-        return tax_set;
-    }
-
-    /**
-     * Returns a map of distinct taxonomies of
-     * all external nodes of node.
-     * If at least one of the external nodes has no taxonomy,
-     * null is returned.
-     * 
-     */
-    public static SortedMap<Taxonomy, Integer> obtainDistinctTaxonomyCounts( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = node.getAllExternalDescendants();
-        final SortedMap<Taxonomy, Integer> tax_map = new TreeMap<Taxonomy, Integer>();
-        for( final PhylogenyNode n : descs ) {
-            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {
-                return null;
-            }
-            final Taxonomy t = n.getNodeData().getTaxonomy();
-            if ( tax_map.containsKey( t ) ) {
-                tax_map.put( t, tax_map.get( t ) + 1 );
-            }
-            else {
-                tax_map.put( t, 1 );
-            }
-        }
-        return tax_map;
-    }
-
-    public static int calculateNumberOfExternalNodesWithoutTaxonomy( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = node.getAllExternalDescendants();
-        int x = 0;
-        for( final PhylogenyNode n : descs ) {
-            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {
-                x++;
-            }
-        }
-        return x;
-    }
-
-    /**
-     * Deep copies the phylogeny originating from this node.
-     */
-    static PhylogenyNode copySubTree( final PhylogenyNode source ) {
-        if ( source == null ) {
-            return null;
-        }
-        else {
-            final PhylogenyNode newnode = source.copyNodeData();
-            if ( !source.isExternal() ) {
-                for( int i = 0; i < source.getNumberOfDescendants(); ++i ) {
-                    newnode.setChildNode( i, PhylogenyMethods.copySubTree( source.getChildNode( i ) ) );
-                }
-            }
-            return newnode;
-        }
-    }
-
-    /**
-     * Shallow copies the phylogeny originating from this node.
-     */
-    static PhylogenyNode copySubTreeShallow( final PhylogenyNode source ) {
-        if ( source == null ) {
-            return null;
-        }
-        else {
-            final PhylogenyNode newnode = source.copyNodeDataShallow();
-            if ( !source.isExternal() ) {
-                for( int i = 0; i < source.getNumberOfDescendants(); ++i ) {
-                    newnode.setChildNode( i, PhylogenyMethods.copySubTreeShallow( source.getChildNode( i ) ) );
-                }
-            }
-            return newnode;
-        }
-    }
-
-    public static void deleteExternalNodesNegativeSelection( final Set<Integer> to_delete, final Phylogeny phy ) {
-        phy.hashIDs();
-        for( final Integer id : to_delete ) {
-            phy.deleteSubtree( phy.getNode( id ), true );
-        }
-        phy.hashIDs();
-    }
-
-    public static void deleteExternalNodesNegativeSelection( final String[] node_names_to_delete, final Phylogeny p )
-            throws IllegalArgumentException {
-        for( int i = 0; i < node_names_to_delete.length; ++i ) {
-            if ( ForesterUtil.isEmpty( node_names_to_delete[ i ] ) ) {
-                continue;
-            }
-            List<PhylogenyNode> nodes = null;
-            nodes = p.getNodes( node_names_to_delete[ i ] );
-            final Iterator<PhylogenyNode> it = nodes.iterator();
-            while ( it.hasNext() ) {
-                final PhylogenyNode n = it.next();
-                if ( !n.isExternal() ) {
-                    throw new IllegalArgumentException( "attempt to delete non-external node \""
-                            + node_names_to_delete[ i ] + "\"" );
-                }
-                p.deleteSubtree( n, true );
-            }
-        }
-    }
-
-    public static void deleteExternalNodesPositiveSelection( final Set<Taxonomy> species_to_keep, final Phylogeny phy ) {
-        //   final Set<Integer> to_delete = new HashSet<Integer>();
-        for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) {
-            final PhylogenyNode n = it.next();
-            if ( n.getNodeData().isHasTaxonomy() ) {
-                if ( !species_to_keep.contains( n.getNodeData().getTaxonomy() ) ) {
-                    //to_delete.add( n.getNodeId() );
-                    phy.deleteSubtree( n, true );
-                }
-            }
-            else {
-                throw new IllegalArgumentException( "node " + n.getId() + " has no taxonomic data" );
-            }
-        }
-        phy.hashIDs();
-        phy.externalNodesHaveChanged();
-        //  deleteExternalNodesNegativeSelection( to_delete, phy );
-    }
-
-    public static List<String> deleteExternalNodesPositiveSelection( final String[] node_names_to_keep,
-                                                                     final Phylogeny p ) {
-        final PhylogenyNodeIterator it = p.iteratorExternalForward();
-        final String[] to_delete = new String[ p.getNumberOfExternalNodes() ];
-        int i = 0;
-        Arrays.sort( node_names_to_keep );
-        while ( it.hasNext() ) {
-            final String curent_name = it.next().getName();
-            if ( Arrays.binarySearch( node_names_to_keep, curent_name ) < 0 ) {
-                to_delete[ i++ ] = curent_name;
-            }
-        }
-        PhylogenyMethods.deleteExternalNodesNegativeSelection( to_delete, p );
-        final List<String> deleted = new ArrayList<String>();
-        for( final String n : to_delete ) {
-            if ( !ForesterUtil.isEmpty( n ) ) {
-                deleted.add( n );
-            }
-        }
-        return deleted;
-    }
-
-    public static List<PhylogenyNode> getAllDescendants( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = new ArrayList<PhylogenyNode>();
-        final Set<Integer> encountered = new HashSet<Integer>();
-        if ( !node.isExternal() ) {
-            final List<PhylogenyNode> exts = node.getAllExternalDescendants();
-            for( PhylogenyNode current : exts ) {
-                descs.add( current );
-                while ( current != node ) {
-                    current = current.getParent();
-                    if ( encountered.contains( current.getId() ) ) {
-                        continue;
-                    }
-                    descs.add( current );
-                    encountered.add( current.getId() );
-                }
-            }
-        }
-        return descs;
-    }
-
-    /**
-     * 
-     * Convenience method
-     * 
-     * @param node
-     * @return
-     */
-    public static Color getBranchColorValue( final PhylogenyNode node ) {
-        if ( node.getBranchData().getBranchColor() == null ) {
-            return null;
-        }
-        return node.getBranchData().getBranchColor().getValue();
-    }
-
-    /**
-     * Convenience method
-     */
-    public static double getBranchWidthValue( final PhylogenyNode node ) {
-        if ( !node.getBranchData().isHasBranchWidth() ) {
-            return BranchWidth.BRANCH_WIDTH_DEFAULT_VALUE;
-        }
-        return node.getBranchData().getBranchWidth().getValue();
-    }
-
-    /**
-     * Convenience method
-     */
-    public static double getConfidenceValue( final PhylogenyNode node ) {
-        if ( !node.getBranchData().isHasConfidences() ) {
-            return Confidence.CONFIDENCE_DEFAULT_VALUE;
-        }
-        return node.getBranchData().getConfidence( 0 ).getValue();
-    }
-
-    /**
-     * Convenience method
-     */
-    public static double[] getConfidenceValuesAsArray( final PhylogenyNode node ) {
-        if ( !node.getBranchData().isHasConfidences() ) {
-            return new double[ 0 ];
-        }
-        final double[] values = new double[ node.getBranchData().getConfidences().size() ];
-        int i = 0;
-        for( final Confidence c : node.getBranchData().getConfidences() ) {
-            values[ i++ ] = c.getValue();
-        }
-        return values;
-    }
-
-    /**
-     * Calculates the distance between PhylogenyNodes n1 and n2.
-     * PRECONDITION: n1 is a descendant of n2.
-     * 
-     * @param n1
-     *            a descendant of n2
-     * @param n2
-     * @return distance between n1 and n2
-     */
-    private static double getDistance( PhylogenyNode n1, final PhylogenyNode n2 ) {
-        double d = 0.0;
-        while ( n1 != n2 ) {
-            if ( n1.getDistanceToParent() > 0.0 ) {
-                d += n1.getDistanceToParent();
-            }
-            n1 = n1.getParent();
-        }
-        return d;
-    }
-
-    /**
-     * Returns taxonomy t if all external descendants have 
-     * the same taxonomy t, null otherwise.
-     * 
-     */
-    public static Taxonomy getExternalDescendantsTaxonomy( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = node.getAllExternalDescendants();
-        Taxonomy tax = null;
-        for( final PhylogenyNode n : descs ) {
-            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {
-                return null;
-            }
-            else if ( tax == null ) {
-                tax = n.getNodeData().getTaxonomy();
-            }
-            else if ( n.getNodeData().getTaxonomy().isEmpty() || !tax.isEqual( n.getNodeData().getTaxonomy() ) ) {
-                return null;
-            }
-        }
-        return tax;
-    }
-
-    public static PhylogenyNode getFurthestDescendant( final PhylogenyNode node ) {
-        final List<PhylogenyNode> children = node.getAllExternalDescendants();
-        PhylogenyNode farthest = null;
-        double longest = -Double.MAX_VALUE;
-        for( final PhylogenyNode child : children ) {
-            if ( PhylogenyMethods.getDistance( child, node ) > longest ) {
-                farthest = child;
-                longest = PhylogenyMethods.getDistance( child, node );
-            }
-        }
-        return farthest;
-    }
-
-    public static PhylogenyMethods getInstance() {
-        if ( PhylogenyMethods._instance == null ) {
-            PhylogenyMethods._instance = new PhylogenyMethods();
-        }
-        return PhylogenyMethods._instance;
-    }
-
-    /**
-     * Returns the largest confidence value found on phy.
-     */
-    static public double getMaximumConfidenceValue( final Phylogeny phy ) {
-        double max = -Double.MAX_VALUE;
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            final double s = PhylogenyMethods.getConfidenceValue( iter.next() );
-            if ( ( s != Confidence.CONFIDENCE_DEFAULT_VALUE ) && ( s > max ) ) {
-                max = s;
-            }
-        }
-        return max;
-    }
-
-    static public int getMinimumDescendentsPerInternalNodes( final Phylogeny phy ) {
-        int min = Integer.MAX_VALUE;
-        int d = 0;
-        PhylogenyNode n;
-        for( final PhylogenyNodeIterator it = phy.iteratorPreorder(); it.hasNext(); ) {
-            n = it.next();
-            if ( n.isInternal() ) {
-                d = n.getNumberOfDescendants();
-                if ( d < min ) {
-                    min = d;
-                }
-            }
-        }
-        return min;
-    }
-
-    /**
-     * Convenience method for display purposes.
-     * Not intended for algorithms.
-     */
-    public static String getSpecies( final PhylogenyNode node ) {
-        if ( !node.getNodeData().isHasTaxonomy() ) {
-            return "";
-        }
-        if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getTaxonomyCode() ) ) {
-            return node.getNodeData().getTaxonomy().getTaxonomyCode();
-        }
-        else if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getScientificName() ) ) {
-            return node.getNodeData().getTaxonomy().getScientificName();
-        }
-        else {
-            return node.getNodeData().getTaxonomy().getCommonName();
-        }
-    }
-
-    /**
-     * Returns all Nodes which are connected to external PhylogenyNode n of this
-     * Phylogeny by a path containing only speciation events. We call these
-     * "super orthologs". Nodes are returned as Vector of references to Nodes.
-     * <p>
-     * PRECONDITION: This tree must be binary and rooted, and speciation -
-     * duplication need to be assigned for each of its internal Nodes.
-     * <p>
-     * Returns null if this Phylogeny is empty or if n is internal.
-     * @param n
-     *            external PhylogenyNode whose strictly speciation related Nodes
-     *            are to be returned
-     * @return Vector of references to all strictly speciation related Nodes of
-     *         PhylogenyNode n of this Phylogeny, null if this Phylogeny is
-     *         empty or if n is internal
-     */
-    public static List<PhylogenyNode> getSuperOrthologousNodes( final PhylogenyNode n ) {
-        // FIXME
-        PhylogenyNode node = n, deepest = null;
-        final List<PhylogenyNode> v = new ArrayList<PhylogenyNode>();
-        if ( !node.isExternal() ) {
-            return null;
-        }
-        while ( !node.isRoot() && !node.getParent().isDuplication() ) {
-            node = node.getParent();
-        }
-        deepest = node;
-        deepest.setIndicatorsToZero();
-        do {
-            if ( !node.isExternal() ) {
-                if ( node.getIndicator() == 0 ) {
-                    node.setIndicator( ( byte ) 1 );
-                    if ( !node.isDuplication() ) {
-                        node = node.getChildNode1();
-                    }
-                }
-                if ( node.getIndicator() == 1 ) {
-                    node.setIndicator( ( byte ) 2 );
-                    if ( !node.isDuplication() ) {
-                        node = node.getChildNode2();
-                    }
-                }
-                if ( ( node != deepest ) && ( node.getIndicator() == 2 ) ) {
-                    node = node.getParent();
-                }
-            }
-            else {
-                if ( node != n ) {
-                    v.add( node );
-                }
-                if ( node != deepest ) {
-                    node = node.getParent();
-                }
-                else {
-                    node.setIndicator( ( byte ) 2 );
-                }
-            }
-        } while ( ( node != deepest ) || ( deepest.getIndicator() != 2 ) );
-        return v;
-    }
-
-    /**
-     * Convenience method for display purposes.
-     * Not intended for algorithms.
-     */
-    public static String getTaxonomyIdentifier( final PhylogenyNode node ) {
-        if ( !node.getNodeData().isHasTaxonomy() || ( node.getNodeData().getTaxonomy().getIdentifier() == null ) ) {
-            return "";
-        }
-        return node.getNodeData().getTaxonomy().getIdentifier().getValue();
-    }
-
-    /**
-     * Returns all Nodes which are connected to external PhylogenyNode n of this
-     * Phylogeny by a path containing, and leading to, only duplication events.
-     * We call these "ultra paralogs". Nodes are returned as Vector of
-     * references to Nodes.
-     * <p>
-     * PRECONDITION: This tree must be binary and rooted, and speciation -
-     * duplication need to be assigned for each of its internal Nodes.
-     * <p>
-     * Returns null if this Phylogeny is empty or if n is internal.
-     * <p>
-     * (Last modified: 10/06/01)
-     * 
-     * @param n
-     *            external PhylogenyNode whose ultra paralogs are to be returned
-     * @return Vector of references to all ultra paralogs of PhylogenyNode n of
-     *         this Phylogeny, null if this Phylogeny is empty or if n is
-     *         internal
-     */
-    public static List<PhylogenyNode> getUltraParalogousNodes( final PhylogenyNode n ) {
-        // FIXME test me
-        PhylogenyNode node = n;
-        if ( !node.isExternal() ) {
-            return null;
-        }
-        while ( !node.isRoot() && node.getParent().isDuplication() && areAllChildrenDuplications( node.getParent() ) ) {
-            node = node.getParent();
-        }
-        final List<PhylogenyNode> nodes = node.getAllExternalDescendants();
-        nodes.remove( n );
-        return nodes;
-    }
-
-    public static String inferCommonPartOfScientificNameOfDescendants( final PhylogenyNode node ) {
-        final List<PhylogenyNode> descs = node.getDescendants();
-        String sn = null;
-        for( final PhylogenyNode n : descs ) {
-            if ( !n.getNodeData().isHasTaxonomy()
-                    || ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getScientificName() ) ) {
-                return null;
-            }
-            else if ( sn == null ) {
-                sn = n.getNodeData().getTaxonomy().getScientificName().trim();
-            }
-            else {
-                String sn_current = n.getNodeData().getTaxonomy().getScientificName().trim();
-                if ( !sn.equals( sn_current ) ) {
-                    boolean overlap = false;
-                    while ( ( sn.indexOf( ' ' ) >= 0 ) || ( sn_current.indexOf( ' ' ) >= 0 ) ) {
-                        if ( ForesterUtil.countChars( sn, ' ' ) > ForesterUtil.countChars( sn_current, ' ' ) ) {
-                            sn = sn.substring( 0, sn.lastIndexOf( ' ' ) ).trim();
-                        }
-                        else {
-                            sn_current = sn_current.substring( 0, sn_current.lastIndexOf( ' ' ) ).trim();
-                        }
-                        if ( sn.equals( sn_current ) ) {
-                            overlap = true;
-                            break;
-                        }
-                    }
-                    if ( !overlap ) {
-                        return null;
-                    }
-                }
-            }
-        }
-        return sn;
-    }
-
-    public static boolean isHasExternalDescendant( final PhylogenyNode node ) {
-        for( int i = 0; i < node.getNumberOfDescendants(); ++i ) {
-            if ( node.getChildNode( i ).isExternal() ) {
-                return true;
-            }
-        }
-        return false;
-    }
-
-    /*
-     * This is case insensitive.
-     * 
-     */
-    public synchronized static boolean isTaxonomyHasIdentifierOfGivenProvider( final Taxonomy tax,
-                                                                               final String[] providers ) {
-        if ( ( tax.getIdentifier() != null ) && !ForesterUtil.isEmpty( tax.getIdentifier().getProvider() ) ) {
-            final String my_tax_prov = tax.getIdentifier().getProvider();
-            for( final String provider : providers ) {
-                if ( provider.equalsIgnoreCase( my_tax_prov ) ) {
-                    return true;
-                }
-            }
-            return false;
-        }
-        else {
-            return false;
-        }
-    }
-
-    private static boolean match( final String s,
-                                  final String query,
-                                  final boolean case_sensitive,
-                                  final boolean partial ) {
-        if ( ForesterUtil.isEmpty( s ) || ForesterUtil.isEmpty( query ) ) {
-            return false;
-        }
-        String my_s = s.trim();
-        String my_query = query.trim();
-        if ( !case_sensitive ) {
-            my_s = my_s.toLowerCase();
-            my_query = my_query.toLowerCase();
-        }
-        if ( partial ) {
-            return my_s.indexOf( my_query ) >= 0;
-        }
-        else {
-            return my_s.equals( my_query );
-        }
-    }
-
-    public static void midpointRoot( final Phylogeny phylogeny ) {
-        if ( phylogeny.getNumberOfExternalNodes() < 2 ) {
-            return;
-        }
-        final PhylogenyMethods methods = getInstance();
-        final double farthest_d = methods.calculateFurthestDistance( phylogeny );
-        final PhylogenyNode f1 = methods.getFarthestNode1();
-        final PhylogenyNode f2 = methods.getFarthestNode2();
-        if ( farthest_d <= 0.0 ) {
-            return;
-        }
-        double x = farthest_d / 2.0;
-        PhylogenyNode n = f1;
-        if ( PhylogenyMethods.getDistance( f1, phylogeny.getRoot() ) < PhylogenyMethods.getDistance( f2, phylogeny
-                .getRoot() ) ) {
-            n = f2;
-        }
-        while ( ( x > n.getDistanceToParent() ) && !n.isRoot() ) {
-            x -= ( n.getDistanceToParent() > 0 ? n.getDistanceToParent() : 0 );
-            n = n.getParent();
-        }
-        phylogeny.reRoot( n, x );
-        phylogeny.recalculateNumberOfExternalDescendants( true );
-        final PhylogenyNode a = getFurthestDescendant( phylogeny.getRoot().getChildNode1() );
-        final PhylogenyNode b = getFurthestDescendant( phylogeny.getRoot().getChildNode2() );
-        final double da = getDistance( a, phylogeny.getRoot() );
-        final double db = getDistance( b, phylogeny.getRoot() );
-        if ( Math.abs( da - db ) > 0.000001 ) {
-            throw new FailedConditionCheckException( "this should not have happened: midpoint rooting failed:  da="
-                    + da + ",  db=" + db + ",  diff=" + Math.abs( da - db ) );
-        }
-    }
-
-    public static void normalizeBootstrapValues( final Phylogeny phylogeny,
-                                                 final double max_bootstrap_value,
-                                                 final double max_normalized_value ) {
-        for( final PhylogenyNodeIterator iter = phylogeny.iteratorPreorder(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            if ( node.isInternal() ) {
-                final double confidence = getConfidenceValue( node );
-                if ( confidence != Confidence.CONFIDENCE_DEFAULT_VALUE ) {
-                    if ( confidence >= max_bootstrap_value ) {
-                        setBootstrapConfidence( node, max_normalized_value );
-                    }
-                    else {
-                        setBootstrapConfidence( node, ( confidence * max_normalized_value ) / max_bootstrap_value );
-                    }
-                }
-            }
-        }
-    }
-
-    public static List<PhylogenyNode> obtainAllNodesAsList( final Phylogeny phy ) {
-        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();
-        if ( phy.isEmpty() ) {
-            return nodes;
-        }
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            nodes.add( iter.next() );
-        }
-        return nodes;
-    }
-
-    public static void postorderBranchColorAveragingExternalNodeBased( final Phylogeny p ) {
-        for( final PhylogenyNodeIterator iter = p.iteratorPostorder(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            double red = 0.0;
-            double green = 0.0;
-            double blue = 0.0;
-            int n = 0;
-            if ( node.isInternal() ) {
-                for( final PhylogenyNodeIterator iterator = node.iterateChildNodesForward(); iterator.hasNext(); ) {
-                    final PhylogenyNode child_node = iterator.next();
-                    final Color child_color = getBranchColorValue( child_node );
-                    if ( child_color != null ) {
-                        ++n;
-                        red += child_color.getRed();
-                        green += child_color.getGreen();
-                        blue += child_color.getBlue();
-                    }
-                }
-                setBranchColorValue( node,
-                                     new Color( ForesterUtil.roundToInt( red / n ),
-                                                ForesterUtil.roundToInt( green / n ),
-                                                ForesterUtil.roundToInt( blue / n ) ) );
-            }
-        }
-    }
-
-    public static void removeNode( final PhylogenyNode remove_me, final Phylogeny phylogeny ) {
-        if ( remove_me.isRoot() ) {
-            throw new IllegalArgumentException( "ill advised attempt to remove root node" );
-        }
-        if ( remove_me.isExternal() ) {
-            phylogeny.deleteSubtree( remove_me, false );
-        }
-        else {
-            final PhylogenyNode parent = remove_me.getParent();
-            final List<PhylogenyNode> descs = remove_me.getDescendants();
-            parent.removeChildNode( remove_me );
-            for( final PhylogenyNode desc : descs ) {
-                parent.addAsChild( desc );
-                desc.setDistanceToParent( addPhylogenyDistances( remove_me.getDistanceToParent(),
-                                                                 desc.getDistanceToParent() ) );
-            }
-            remove_me.setParent( null );
-            phylogeny.setIdHash( null );
-            phylogeny.externalNodesHaveChanged();
-        }
-    }
-
-    public static List<PhylogenyNode> searchData( final String query,
-                                                  final Phylogeny phy,
-                                                  final boolean case_sensitive,
-                                                  final boolean partial ) {
-        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();
-        if ( phy.isEmpty() || ( query == null ) ) {
-            return nodes;
-        }
-        if ( ForesterUtil.isEmpty( query ) ) {
-            return nodes;
-        }
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            boolean match = false;
-            if ( match( node.getName(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            else if ( node.getNodeData().isHasTaxonomy()
-                    && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            else if ( node.getNodeData().isHasTaxonomy()
-                    && match( node.getNodeData().getTaxonomy().getCommonName(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            else if ( node.getNodeData().isHasTaxonomy()
-                    && match( node.getNodeData().getTaxonomy().getScientificName(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            else if ( node.getNodeData().isHasTaxonomy()
-                    && ( node.getNodeData().getTaxonomy().getIdentifier() != null )
-                    && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(),
-                              query,
-                              case_sensitive,
-                              partial ) ) {
-                match = true;
-            }
-            else if ( node.getNodeData().isHasTaxonomy() && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) {
-                final List<String> syns = node.getNodeData().getTaxonomy().getSynonyms();
-                I: for( final String syn : syns ) {
-                    if ( match( syn, query, case_sensitive, partial ) ) {
-                        match = true;
-                        break I;
-                    }
-                }
-            }
-            if ( !match && node.getNodeData().isHasSequence()
-                    && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            if ( !match && node.getNodeData().isHasSequence()
-                    && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial ) ) {
-                match = true;
-            }
-            if ( !match
-                    && node.getNodeData().isHasSequence()
-                    && ( node.getNodeData().getSequence().getAccession() != null )
-                    && match( node.getNodeData().getSequence().getAccession().getValue(),
-                              query,
-                              case_sensitive,
-                              partial ) ) {
-                match = true;
-            }
-            if ( !match && node.getNodeData().isHasSequence()
-                    && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) {
-                final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture();
-                I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) {
-                    if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial ) ) {
-                        match = true;
-                        break I;
-                    }
-                }
-            }
-            if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) {
-                Iterator<String> it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator();
-                I: while ( it.hasNext() ) {
-                    if ( match( it.next(), query, case_sensitive, partial ) ) {
-                        match = true;
-                        break I;
-                    }
-                }
-                it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator();
-                I: while ( it.hasNext() ) {
-                    if ( match( it.next(), query, case_sensitive, partial ) ) {
-                        match = true;
-                        break I;
-                    }
-                }
-            }
-            if ( match ) {
-                nodes.add( node );
-            }
-        }
-        return nodes;
-    }
-
-    public static List<PhylogenyNode> searchDataLogicalAnd( final String[] queries,
-                                                            final Phylogeny phy,
-                                                            final boolean case_sensitive,
-                                                            final boolean partial ) {
-        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();
-        if ( phy.isEmpty() || ( queries == null ) || ( queries.length < 1 ) ) {
-            return nodes;
-        }
-        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {
-            final PhylogenyNode node = iter.next();
-            boolean all_matched = true;
-            for( final String query : queries ) {
-                boolean match = false;
-                if ( ForesterUtil.isEmpty( query ) ) {
-                    continue;
-                }
-                if ( match( node.getName(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                else if ( node.getNodeData().isHasTaxonomy()
-                        && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                else if ( node.getNodeData().isHasTaxonomy()
-                        && match( node.getNodeData().getTaxonomy().getCommonName(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                else if ( node.getNodeData().isHasTaxonomy()
-                        && match( node.getNodeData().getTaxonomy().getScientificName(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                else if ( node.getNodeData().isHasTaxonomy()
-                        && ( node.getNodeData().getTaxonomy().getIdentifier() != null )
-                        && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(),
-                                  query,
-                                  case_sensitive,
-                                  partial ) ) {
-                    match = true;
-                }
-                else if ( node.getNodeData().isHasTaxonomy()
-                        && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) {
-                    final List<String> syns = node.getNodeData().getTaxonomy().getSynonyms();
-                    I: for( final String syn : syns ) {
-                        if ( match( syn, query, case_sensitive, partial ) ) {
-                            match = true;
-                            break I;
-                        }
-                    }
-                }
-                if ( !match && node.getNodeData().isHasSequence()
-                        && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                if ( !match && node.getNodeData().isHasSequence()
-                        && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial ) ) {
-                    match = true;
-                }
-                if ( !match
-                        && node.getNodeData().isHasSequence()
-                        && ( node.getNodeData().getSequence().getAccession() != null )
-                        && match( node.getNodeData().getSequence().getAccession().getValue(),
-                                  query,
-                                  case_sensitive,
-                                  partial ) ) {
-                    match = true;
-                }
-                if ( !match && node.getNodeData().isHasSequence()
-                        && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) {
-                    final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture();
-                    I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) {
-                        if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial ) ) {
-                            match = true;
-                            break I;
-                        }
-                    }
-                }
-                if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) {
-                    Iterator<String> it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator();
-                    I: while ( it.hasNext() ) {
-                        if ( match( it.next(), query, case_sensitive, partial ) ) {
-                            match = true;
-                            break I;
-                        }
-                    }
-                    it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator();
-                    I: while ( it.hasNext() ) {
-                        if ( match( it.next(), query, case_sensitive, partial ) ) {
-                            match = true;
-                            break I;
-                        }
-                    }
-                    //                    final String[] bcp_ary = node.getNodeData().getBinaryCharacters()
-                    //                            .getPresentCharactersAsStringArray();
-                    //                    I: for( final String bc : bcp_ary ) {
-                    //                        if ( match( bc, query, case_sensitive, partial ) ) {
-                    //                            match = true;
-                    //                            break I;
-                    //                        }
-                    //                    }
-                    //                    final String[] bcg_ary = node.getNodeData().getBinaryCharacters()
-                    //                            .getGainedCharactersAsStringArray();
-                    //                    I: for( final String bc : bcg_ary ) {
-                    //                        if ( match( bc, query, case_sensitive, partial ) ) {
-                    //                            match = true;
-                    //                            break I;
-                    //                        }
-                    //                    }
-                }
-                if ( !match ) {
-                    all_matched = false;
-                    break;
-                }
-            }
-            if ( all_matched ) {
-                nodes.add( node );
-            }
-        }
-        return nodes;
-    }
-
-    /**
-     * Convenience method.
-     * Sets value for the first confidence value (created if not present, values overwritten otherwise). 
-     */
-    public static void setBootstrapConfidence( final PhylogenyNode node, final double bootstrap_confidence_value ) {
-        setConfidence( node, bootstrap_confidence_value, "bootstrap" );
-    }
-
-    public static void setBranchColorValue( final PhylogenyNode node, final Color color ) {
-        if ( node.getBranchData().getBranchColor() == null ) {
-            node.getBranchData().setBranchColor( new BranchColor() );
-        }
-        node.getBranchData().getBranchColor().setValue( color );
-    }
-
-    /**
-     * Convenience method
-     */
-    public static void setBranchWidthValue( final PhylogenyNode node, final double branch_width_value ) {
-        node.getBranchData().setBranchWidth( new BranchWidth( branch_width_value ) );
-    }
-
-    /**
-     * Convenience method.
-     * Sets value for the first confidence value (created if not present, values overwritten otherwise). 
-     */
-    public static void setConfidence( final PhylogenyNode node, final double confidence_value ) {
-        setConfidence( node, confidence_value, "" );
-    }
-
-    /**
-     * Convenience method.
-     * Sets value for the first confidence value (created if not present, values overwritten otherwise). 
-     */
-    public static void setConfidence( final PhylogenyNode node, final double confidence_value, final String type ) {
-        Confidence c = null;
-        if ( node.getBranchData().getNumberOfConfidences() > 0 ) {
-            c = node.getBranchData().getConfidence( 0 );
-        }
-        else {
-            c = new Confidence();
-            node.getBranchData().addConfidence( c );
-        }
-        c.setType( type );
-        c.setValue( confidence_value );
-    }
-
-    public static void setScientificName( final PhylogenyNode node, final String scientific_name ) {
-        if ( !node.getNodeData().isHasTaxonomy() ) {
-            node.getNodeData().setTaxonomy( new Taxonomy() );
-        }
-        node.getNodeData().getTaxonomy().setScientificName( scientific_name );
-    }
-
-    /**
-     * Convenience method to set the taxonomy code of a phylogeny node.
-     * 
-     * 
-     * @param node
-     * @param taxonomy_code
-     */
-    public static void setTaxonomyCode( final PhylogenyNode node, final String taxonomy_code ) {
-        if ( !node.getNodeData().isHasTaxonomy() ) {
-            node.getNodeData().setTaxonomy( new Taxonomy() );
-        }
-        node.getNodeData().getTaxonomy().setTaxonomyCode( taxonomy_code );
-    }
-
-    /**
-     * Removes from Phylogeny to_be_stripped all external Nodes which are
-     * associated with a species NOT found in Phylogeny reference.
-     * 
-     * @param reference
-     *            a reference Phylogeny
-     * @param to_be_stripped
-     *            Phylogeny to be stripped
-     * @return number of external nodes removed from to_be_stripped
-     */
-    public static int taxonomyBasedDeletionOfExternalNodes( final Phylogeny reference, final Phylogeny to_be_stripped ) {
-        final Set<String> ref_ext_taxo = new HashSet<String>();
-        final ArrayList<PhylogenyNode> nodes_to_delete = new ArrayList<PhylogenyNode>();
-        for( final PhylogenyNodeIterator it = reference.iteratorExternalForward(); it.hasNext(); ) {
-            ref_ext_taxo.add( getSpecies( it.next() ) );
-        }
-        for( final PhylogenyNodeIterator it = to_be_stripped.iteratorExternalForward(); it.hasNext(); ) {
-            final PhylogenyNode n = it.next();
-            if ( !ref_ext_taxo.contains( getSpecies( n ) ) ) {
-                nodes_to_delete.add( n );
-            }
-        }
-        for( final PhylogenyNode phylogenyNode : nodes_to_delete ) {
-            to_be_stripped.deleteSubtree( phylogenyNode, true );
-        }
-        return nodes_to_delete.size();
-    }
-
-    public static enum PhylogenyNodeField {
-        CLADE_NAME,
-        TAXONOMY_CODE,
-        TAXONOMY_SCIENTIFIC_NAME,
-        TAXONOMY_COMMON_NAME,
-        SEQUENCE_SYMBOL,
-        SEQUENCE_NAME,
-        TAXONOMY_ID_UNIPROT_1,
-        TAXONOMY_ID_UNIPROT_2;
-    }
-
-    public static enum TAXONOMY_EXTRACTION {
-        NO, YES, PFAM_STYLE_ONLY;
-    }
-
-    public static enum DESCENDANT_SORT_PRIORITY {
-        TAXONOMY, SEQUENCE, NODE_NAME;
-    }
-}
+// $Id:\r
+// FORESTER -- software libraries and applications\r
+// for evolutionary biology research and applications.\r
+//\r
+// Copyright (C) 2008-2009 Christian M. Zmasek\r
+// Copyright (C) 2008-2009 Burnham Institute for Medical Research\r
+// All rights reserved\r
+//\r
+// This library is free software; you can redistribute it and/or\r
+// modify it under the terms of the GNU Lesser General Public\r
+// License as published by the Free Software Foundation; either\r
+// version 2.1 of the License, or (at your option) any later version.\r
+//\r
+// This library is distributed in the hope that it will be useful,\r
+// but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+// Lesser General Public License for more details.\r
+//\r
+// You should have received a copy of the GNU Lesser General Public\r
+// License along with this library; if not, write to the Free Software\r
+// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA\r
+//\r
+// Contact: phylosoft @ gmail . com\r
+// WWW: https://sites.google.com/site/cmzmasek/home/software/forester\r
+\r
+package org.forester.phylogeny;\r
+\r
+import java.awt.Color;\r
+import java.io.File;\r
+import java.io.IOException;\r
+import java.util.ArrayList;\r
+import java.util.Arrays;\r
+import java.util.Collections;\r
+import java.util.Comparator;\r
+import java.util.HashMap;\r
+import java.util.HashSet;\r
+import java.util.Iterator;\r
+import java.util.List;\r
+import java.util.Map;\r
+import java.util.Set;\r
+import java.util.regex.Matcher;\r
+import java.util.regex.Pattern;\r
+import java.util.regex.PatternSyntaxException;\r
+\r
+import org.forester.io.parsers.FastaParser;\r
+import org.forester.io.parsers.PhylogenyParser;\r
+import org.forester.io.parsers.phyloxml.PhyloXmlDataFormatException;\r
+import org.forester.io.parsers.phyloxml.PhyloXmlUtil;\r
+import org.forester.io.parsers.util.PhylogenyParserException;\r
+import org.forester.msa.Msa;\r
+import org.forester.phylogeny.data.Accession;\r
+import org.forester.phylogeny.data.Annotation;\r
+import org.forester.phylogeny.data.BranchColor;\r
+import org.forester.phylogeny.data.BranchWidth;\r
+import org.forester.phylogeny.data.Confidence;\r
+import org.forester.phylogeny.data.DomainArchitecture;\r
+import org.forester.phylogeny.data.Event;\r
+import org.forester.phylogeny.data.Identifier;\r
+import org.forester.phylogeny.data.PhylogenyDataUtil;\r
+import org.forester.phylogeny.data.Sequence;\r
+import org.forester.phylogeny.data.Taxonomy;\r
+import org.forester.phylogeny.factories.ParserBasedPhylogenyFactory;\r
+import org.forester.phylogeny.factories.PhylogenyFactory;\r
+import org.forester.phylogeny.iterators.PhylogenyNodeIterator;\r
+import org.forester.util.BasicDescriptiveStatistics;\r
+import org.forester.util.DescriptiveStatistics;\r
+import org.forester.util.ForesterUtil;\r
+\r
+public class PhylogenyMethods {\r
+\r
+    private PhylogenyMethods() {\r
+        // Hidden constructor.\r
+    }\r
+\r
+    @Override\r
+    public Object clone() throws CloneNotSupportedException {\r
+        throw new CloneNotSupportedException();\r
+    }\r
+\r
+    public static boolean extractFastaInformation( final Phylogeny phy ) {\r
+        boolean could_extract = false;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            if ( !ForesterUtil.isEmpty( node.getName() ) ) {\r
+                final Matcher name_m = FastaParser.FASTA_DESC_LINE.matcher( node.getName() );\r
+                if ( name_m.lookingAt() ) {\r
+                    could_extract = true;\r
+                    final String acc_source = name_m.group( 1 );\r
+                    final String acc = name_m.group( 2 );\r
+                    final String seq_name = name_m.group( 3 );\r
+                    final String tax_sn = name_m.group( 4 );\r
+                    if ( !ForesterUtil.isEmpty( acc_source ) && !ForesterUtil.isEmpty( acc ) ) {\r
+                        ForesterUtil.ensurePresenceOfSequence( node );\r
+                        node.getNodeData().getSequence( 0 ).setAccession( new Accession( acc, acc_source ) );\r
+                    }\r
+                    if ( !ForesterUtil.isEmpty( seq_name ) ) {\r
+                        ForesterUtil.ensurePresenceOfSequence( node );\r
+                        node.getNodeData().getSequence( 0 ).setName( seq_name );\r
+                    }\r
+                    if ( !ForesterUtil.isEmpty( tax_sn ) ) {\r
+                        ForesterUtil.ensurePresenceOfTaxonomy( node );\r
+                        node.getNodeData().getTaxonomy( 0 ).setScientificName( tax_sn );\r
+                    }\r
+                }\r
+            }\r
+        }\r
+        return could_extract;\r
+    }\r
+\r
+    public static DescriptiveStatistics calculatBranchLengthStatistics( final Phylogeny phy ) {\r
+        final DescriptiveStatistics stats = new BasicDescriptiveStatistics();\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( !n.isRoot() && ( n.getDistanceToParent() >= 0.0 ) ) {\r
+                stats.addValue( n.getDistanceToParent() );\r
+            }\r
+        }\r
+        return stats;\r
+    }\r
+\r
+    public static List<DescriptiveStatistics> calculatConfidenceStatistics( final Phylogeny phy ) {\r
+        final List<DescriptiveStatistics> stats = new ArrayList<DescriptiveStatistics>();\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( !n.isExternal() && !n.isRoot() ) {\r
+                if ( n.getBranchData().isHasConfidences() ) {\r
+                    for( int i = 0; i < n.getBranchData().getConfidences().size(); ++i ) {\r
+                        final Confidence c = n.getBranchData().getConfidences().get( i );\r
+                        if ( ( i > ( stats.size() - 1 ) ) || ( stats.get( i ) == null ) ) {\r
+                            stats.add( i, new BasicDescriptiveStatistics() );\r
+                        }\r
+                        if ( !ForesterUtil.isEmpty( c.getType() ) ) {\r
+                            if ( !ForesterUtil.isEmpty( stats.get( i ).getDescription() ) ) {\r
+                                if ( !stats.get( i ).getDescription().equalsIgnoreCase( c.getType() ) ) {\r
+                                    throw new IllegalArgumentException( "support values in node [" + n.toString()\r
+                                                                        + "] appear inconsistently ordered" );\r
+                                }\r
+                            }\r
+                            stats.get( i ).setDescription( c.getType() );\r
+                        }\r
+                        stats.get( i ).addValue( ( ( c != null ) && ( c.getValue() >= 0 ) ) ? c.getValue() : 0 );\r
+                    }\r
+                }\r
+            }\r
+        }\r
+        return stats;\r
+    }\r
+\r
+    /**\r
+     * Calculates the distance between PhylogenyNodes node1 and node2.\r
+     *\r
+     *\r
+     * @param node1\r
+     * @param node2\r
+     * @return distance between node1 and node2\r
+     */\r
+    public static double calculateDistance( final PhylogenyNode node1, final PhylogenyNode node2 ) {\r
+        final PhylogenyNode lca = calculateLCA( node1, node2 );\r
+        final PhylogenyNode n1 = node1;\r
+        final PhylogenyNode n2 = node2;\r
+        return ( PhylogenyMethods.getDistance( n1, lca ) + PhylogenyMethods.getDistance( n2, lca ) );\r
+    }\r
+\r
+    /**\r
+     * Returns the LCA of PhylogenyNodes node1 and node2.\r
+     *\r
+     *\r
+     * @param node1\r
+     * @param node2\r
+     * @return LCA of node1 and node2\r
+     */\r
+    public final static PhylogenyNode calculateLCA( PhylogenyNode node1, PhylogenyNode node2 ) {\r
+        if ( node1 == null ) {\r
+            throw new IllegalArgumentException( "first argument (node) is null" );\r
+        }\r
+        if ( node2 == null ) {\r
+            throw new IllegalArgumentException( "second argument (node) is null" );\r
+        }\r
+        if ( node1 == node2 ) {\r
+            return node1;\r
+        }\r
+        if ( ( node1.getParent() == node2.getParent() ) ) {\r
+            return node1.getParent();\r
+        }\r
+        int depth1 = node1.calculateDepth();\r
+        int depth2 = node2.calculateDepth();\r
+        while ( ( depth1 > -1 ) && ( depth2 > -1 ) ) {\r
+            if ( depth1 > depth2 ) {\r
+                node1 = node1.getParent();\r
+                depth1--;\r
+            }\r
+            else if ( depth2 > depth1 ) {\r
+                node2 = node2.getParent();\r
+                depth2--;\r
+            }\r
+            else {\r
+                if ( node1 == node2 ) {\r
+                    return node1;\r
+                }\r
+                node1 = node1.getParent();\r
+                node2 = node2.getParent();\r
+                depth1--;\r
+                depth2--;\r
+            }\r
+        }\r
+        throw new IllegalArgumentException( "illegal attempt to calculate LCA of two nodes which do not share a common root" );\r
+    }\r
+\r
+    /**\r
+     * Returns the LCA of PhylogenyNodes node1 and node2.\r
+     * Precondition: ids are in pre-order (or level-order).\r
+     *\r
+     *\r
+     * @param node1\r
+     * @param node2\r
+     * @return LCA of node1 and node2\r
+     */\r
+    public final static PhylogenyNode calculateLCAonTreeWithIdsInPreOrder( PhylogenyNode node1, PhylogenyNode node2 ) {\r
+        if ( node1 == null ) {\r
+            throw new IllegalArgumentException( "first argument (node) is null" );\r
+        }\r
+        if ( node2 == null ) {\r
+            throw new IllegalArgumentException( "second argument (node) is null" );\r
+        }\r
+        while ( node1 != node2 ) {\r
+            if ( node1.getId() > node2.getId() ) {\r
+                node1 = node1.getParent();\r
+            }\r
+            else {\r
+                node2 = node2.getParent();\r
+            }\r
+        }\r
+        return node1;\r
+    }\r
+\r
+    public static short calculateMaxBranchesToLeaf( final PhylogenyNode node ) {\r
+        if ( node.isExternal() ) {\r
+            return 0;\r
+        }\r
+        short max = 0;\r
+        for( PhylogenyNode d : node.getAllExternalDescendants() ) {\r
+            short steps = 0;\r
+            while ( d != node ) {\r
+                if ( d.isCollapse() ) {\r
+                    steps = 0;\r
+                }\r
+                else {\r
+                    steps++;\r
+                }\r
+                d = d.getParent();\r
+            }\r
+            if ( max < steps ) {\r
+                max = steps;\r
+            }\r
+        }\r
+        return max;\r
+    }\r
+\r
+    public static int calculateMaxDepth( final Phylogeny phy ) {\r
+        int max = 0;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            final int steps = node.calculateDepth();\r
+            if ( steps > max ) {\r
+                max = steps;\r
+            }\r
+        }\r
+        return max;\r
+    }\r
+\r
+    public static double calculateMaxDistanceToRoot( final Phylogeny phy ) {\r
+        double max = 0.0;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            final double d = node.calculateDistanceToRoot();\r
+            if ( d > max ) {\r
+                max = d;\r
+            }\r
+        }\r
+        return max;\r
+    }\r
+\r
+    public static PhylogenyNode calculateNodeWithMaxDistanceToRoot( final Phylogeny phy ) {\r
+        double max = 0.0;\r
+        PhylogenyNode max_node = phy.getFirstExternalNode();\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorExternalForward(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            final double d = node.calculateDistanceToRoot();\r
+            if ( d > max ) {\r
+                max = d;\r
+                max_node = node;\r
+            }\r
+        }\r
+        return max_node;\r
+    }\r
+\r
+    public static int calculateNumberOfExternalNodesWithoutTaxonomy( final PhylogenyNode node ) {\r
+        final List<PhylogenyNode> descs = node.getAllExternalDescendants();\r
+        int x = 0;\r
+        for( final PhylogenyNode n : descs ) {\r
+            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {\r
+                x++;\r
+            }\r
+        }\r
+        return x;\r
+    }\r
+\r
+    public static DescriptiveStatistics calculatNumberOfDescendantsPerNodeStatistics( final Phylogeny phy ) {\r
+        final DescriptiveStatistics stats = new BasicDescriptiveStatistics();\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( !n.isExternal() ) {\r
+                stats.addValue( n.getNumberOfDescendants() );\r
+            }\r
+        }\r
+        return stats;\r
+    }\r
+\r
+    public final static void collapseSubtreeStructure( final PhylogenyNode n ) {\r
+        final List<PhylogenyNode> eds = n.getAllExternalDescendants();\r
+        final List<Double> d = new ArrayList<Double>();\r
+        for( final PhylogenyNode ed : eds ) {\r
+            d.add( calculateDistanceToAncestor( n, ed ) );\r
+        }\r
+        for( int i = 0; i < eds.size(); ++i ) {\r
+            n.setChildNode( i, eds.get( i ) );\r
+            eds.get( i ).setDistanceToParent( d.get( i ) );\r
+        }\r
+    }\r
+\r
+    public static int countNumberOfOneDescendantNodes( final Phylogeny phy ) {\r
+        int count = 0;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( !n.isExternal() && ( n.getNumberOfDescendants() == 1 ) ) {\r
+                count++;\r
+            }\r
+        }\r
+        return count;\r
+    }\r
+\r
+    public static int countNumberOfPolytomies( final Phylogeny phy ) {\r
+        int count = 0;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( !n.isExternal() && ( n.getNumberOfDescendants() > 2 ) ) {\r
+                count++;\r
+            }\r
+        }\r
+        return count;\r
+    }\r
+\r
+    public static final HashMap<String, PhylogenyNode> createNameToExtNodeMap( final Phylogeny phy ) {\r
+        final HashMap<String, PhylogenyNode> nodes = new HashMap<String, PhylogenyNode>();\r
+        final List<PhylogenyNode> ext = phy.getExternalNodes();\r
+        for( final PhylogenyNode n : ext ) {\r
+            nodes.put( n.getName(), n );\r
+        }\r
+        return nodes;\r
+    }\r
+\r
+    public static void deleteExternalNodesNegativeSelection( final Set<Long> to_delete, final Phylogeny phy ) {\r
+        for( final Long id : to_delete ) {\r
+            phy.deleteSubtree( phy.getNode( id ), true );\r
+        }\r
+        phy.clearHashIdToNodeMap();\r
+        phy.externalNodesHaveChanged();\r
+    }\r
+\r
+    public static void deleteExternalNodesNegativeSelection( final String[] node_names_to_delete, final Phylogeny p )\r
+            throws IllegalArgumentException {\r
+        for( final String element : node_names_to_delete ) {\r
+            if ( ForesterUtil.isEmpty( element ) ) {\r
+                continue;\r
+            }\r
+            List<PhylogenyNode> nodes = null;\r
+            nodes = p.getNodes( element );\r
+            final Iterator<PhylogenyNode> it = nodes.iterator();\r
+            while ( it.hasNext() ) {\r
+                final PhylogenyNode n = it.next();\r
+                if ( !n.isExternal() ) {\r
+                    throw new IllegalArgumentException( "attempt to delete non-external node \"" + element + "\"" );\r
+                }\r
+                p.deleteSubtree( n, true );\r
+            }\r
+        }\r
+        p.clearHashIdToNodeMap();\r
+        p.externalNodesHaveChanged();\r
+    }\r
+\r
+    public static List<String> deleteExternalNodesPositiveSelection( final String[] node_names_to_keep,\r
+                                                                     final Phylogeny p ) {\r
+        final PhylogenyNodeIterator it = p.iteratorExternalForward();\r
+        final String[] to_delete = new String[ p.getNumberOfExternalNodes() ];\r
+        int i = 0;\r
+        Arrays.sort( node_names_to_keep );\r
+        while ( it.hasNext() ) {\r
+            final String curent_name = it.next().getName();\r
+            if ( Arrays.binarySearch( node_names_to_keep, curent_name ) < 0 ) {\r
+                to_delete[ i++ ] = curent_name;\r
+            }\r
+        }\r
+        PhylogenyMethods.deleteExternalNodesNegativeSelection( to_delete, p );\r
+        final List<String> deleted = new ArrayList<String>();\r
+        for( final String n : to_delete ) {\r
+            if ( !ForesterUtil.isEmpty( n ) ) {\r
+                deleted.add( n );\r
+            }\r
+        }\r
+        return deleted;\r
+    }\r
+\r
+    public static void deleteExternalNodesPositiveSelectionT( final List<Taxonomy> species_to_keep, final Phylogeny phy ) {\r
+        final Set<Long> to_delete = new HashSet<Long>();\r
+        for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( n.getNodeData().isHasTaxonomy() ) {\r
+                if ( !species_to_keep.contains( n.getNodeData().getTaxonomy() ) ) {\r
+                    to_delete.add( n.getId() );\r
+                }\r
+            }\r
+            else {\r
+                throw new IllegalArgumentException( "node " + n.getId() + " has no taxonomic data" );\r
+            }\r
+        }\r
+        deleteExternalNodesNegativeSelection( to_delete, phy );\r
+    }\r
+\r
+    final public static void deleteInternalNodesWithOnlyOneDescendent( final Phylogeny phy ) {\r
+        final ArrayList<PhylogenyNode> to_delete = new ArrayList<PhylogenyNode>();\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPostorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode n = iter.next();\r
+            if ( ( !n.isExternal() ) && ( n.getNumberOfDescendants() == 1 ) ) {\r
+                to_delete.add( n );\r
+            }\r
+        }\r
+        for( final PhylogenyNode d : to_delete ) {\r
+            PhylogenyMethods.removeNode( d, phy );\r
+        }\r
+        phy.clearHashIdToNodeMap();\r
+        phy.externalNodesHaveChanged();\r
+    }\r
+\r
+    final public static void deleteNonOrthologousExternalNodes( final Phylogeny phy, final PhylogenyNode n ) {\r
+        if ( n.isInternal() ) {\r
+            throw new IllegalArgumentException( "node is not external" );\r
+        }\r
+        final ArrayList<PhylogenyNode> to_delete = new ArrayList<PhylogenyNode>();\r
+        for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) {\r
+            final PhylogenyNode i = it.next();\r
+            if ( !PhylogenyMethods.getEventAtLCA( n, i ).isSpeciation() ) {\r
+                to_delete.add( i );\r
+            }\r
+        }\r
+        for( final PhylogenyNode d : to_delete ) {\r
+            phy.deleteSubtree( d, true );\r
+        }\r
+        phy.clearHashIdToNodeMap();\r
+        phy.externalNodesHaveChanged();\r
+    }\r
+\r
+    public final static List<List<PhylogenyNode>> divideIntoSubTrees( final Phylogeny phy,\r
+                                                                      final double min_distance_to_root ) {\r
+        if ( min_distance_to_root <= 0 ) {\r
+            throw new IllegalArgumentException( "attempt to use min distance to root of: " + min_distance_to_root );\r
+        }\r
+        final List<List<PhylogenyNode>> l = new ArrayList<List<PhylogenyNode>>();\r
+        setAllIndicatorsToZero( phy );\r
+        for( final PhylogenyNodeIterator it = phy.iteratorExternalForward(); it.hasNext(); ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( n.getIndicator() != 0 ) {\r
+                continue;\r
+            }\r
+            l.add( divideIntoSubTreesHelper( n, min_distance_to_root ) );\r
+            if ( l.isEmpty() ) {\r
+                throw new RuntimeException( "this should not have happened" );\r
+            }\r
+        }\r
+        return l;\r
+    }\r
+\r
+    public static List<PhylogenyNode> getAllDescendants( final PhylogenyNode node ) {\r
+        final List<PhylogenyNode> descs = new ArrayList<PhylogenyNode>();\r
+        final Set<Long> encountered = new HashSet<Long>();\r
+        if ( !node.isExternal() ) {\r
+            final List<PhylogenyNode> exts = node.getAllExternalDescendants();\r
+            for( PhylogenyNode current : exts ) {\r
+                descs.add( current );\r
+                while ( current != node ) {\r
+                    current = current.getParent();\r
+                    if ( encountered.contains( current.getId() ) ) {\r
+                        continue;\r
+                    }\r
+                    descs.add( current );\r
+                    encountered.add( current.getId() );\r
+                }\r
+            }\r
+        }\r
+        return descs;\r
+    }\r
+\r
+    /**\r
+     *\r
+     * Convenience method\r
+     *\r
+     * @param node\r
+     * @return\r
+     */\r
+    public static Color getBranchColorValue( final PhylogenyNode node ) {\r
+        if ( node.getBranchData().getBranchColor() == null ) {\r
+            return null;\r
+        }\r
+        return node.getBranchData().getBranchColor().getValue();\r
+    }\r
+\r
+    /**\r
+     * Convenience method\r
+     */\r
+    public static double getBranchWidthValue( final PhylogenyNode node ) {\r
+        if ( !node.getBranchData().isHasBranchWidth() ) {\r
+            return BranchWidth.BRANCH_WIDTH_DEFAULT_VALUE;\r
+        }\r
+        return node.getBranchData().getBranchWidth().getValue();\r
+    }\r
+\r
+    /**\r
+     * Convenience method\r
+     */\r
+    public static double getConfidenceValue( final PhylogenyNode node ) {\r
+        if ( !node.getBranchData().isHasConfidences() ) {\r
+            return Confidence.CONFIDENCE_DEFAULT_VALUE;\r
+        }\r
+        return node.getBranchData().getConfidence( 0 ).getValue();\r
+    }\r
+\r
+    /**\r
+     * Convenience method\r
+     */\r
+    public static double[] getConfidenceValuesAsArray( final PhylogenyNode node ) {\r
+        if ( !node.getBranchData().isHasConfidences() ) {\r
+            return new double[ 0 ];\r
+        }\r
+        final double[] values = new double[ node.getBranchData().getConfidences().size() ];\r
+        int i = 0;\r
+        for( final Confidence c : node.getBranchData().getConfidences() ) {\r
+            values[ i++ ] = c.getValue();\r
+        }\r
+        return values;\r
+    }\r
+\r
+    final public static Event getEventAtLCA( final PhylogenyNode n1, final PhylogenyNode n2 ) {\r
+        return calculateLCA( n1, n2 ).getNodeData().getEvent();\r
+    }\r
+\r
+    /**\r
+     * Returns taxonomy t if all external descendants have\r
+     * the same taxonomy t, null otherwise.\r
+     *\r
+     */\r
+    public static Taxonomy getExternalDescendantsTaxonomy( final PhylogenyNode node ) {\r
+        final List<PhylogenyNode> descs = node.getAllExternalDescendants();\r
+        Taxonomy tax = null;\r
+        for( final PhylogenyNode n : descs ) {\r
+            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {\r
+                return null;\r
+            }\r
+            else if ( tax == null ) {\r
+                tax = n.getNodeData().getTaxonomy();\r
+            }\r
+            else if ( n.getNodeData().getTaxonomy().isEmpty() || !tax.isEqual( n.getNodeData().getTaxonomy() ) ) {\r
+                return null;\r
+            }\r
+        }\r
+        return tax;\r
+    }\r
+\r
+    public static PhylogenyNode getFurthestDescendant( final PhylogenyNode node ) {\r
+        final List<PhylogenyNode> children = node.getAllExternalDescendants();\r
+        PhylogenyNode farthest = null;\r
+        double longest = -Double.MAX_VALUE;\r
+        for( final PhylogenyNode child : children ) {\r
+            if ( PhylogenyMethods.getDistance( child, node ) > longest ) {\r
+                farthest = child;\r
+                longest = PhylogenyMethods.getDistance( child, node );\r
+            }\r
+        }\r
+        return farthest;\r
+    }\r
+\r
+    // public static PhylogenyMethods getInstance() {\r
+    //     if ( PhylogenyMethods._instance == null ) {\r
+    //         PhylogenyMethods._instance = new PhylogenyMethods();\r
+    //    }\r
+    //    return PhylogenyMethods._instance;\r
+    //  }\r
+    /**\r
+     * Returns the largest confidence value found on phy.\r
+     */\r
+    static public double getMaximumConfidenceValue( final Phylogeny phy ) {\r
+        double max = -Double.MAX_VALUE;\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final double s = PhylogenyMethods.getConfidenceValue( iter.next() );\r
+            if ( ( s != Confidence.CONFIDENCE_DEFAULT_VALUE ) && ( s > max ) ) {\r
+                max = s;\r
+            }\r
+        }\r
+        return max;\r
+    }\r
+\r
+    static public int getMinimumDescendentsPerInternalNodes( final Phylogeny phy ) {\r
+        int min = Integer.MAX_VALUE;\r
+        int d = 0;\r
+        PhylogenyNode n;\r
+        for( final PhylogenyNodeIterator it = phy.iteratorPreorder(); it.hasNext(); ) {\r
+            n = it.next();\r
+            if ( n.isInternal() ) {\r
+                d = n.getNumberOfDescendants();\r
+                if ( d < min ) {\r
+                    min = d;\r
+                }\r
+            }\r
+        }\r
+        return min;\r
+    }\r
+\r
+    /**\r
+     * Convenience method for display purposes.\r
+     * Not intended for algorithms.\r
+     */\r
+    public static String getSpecies( final PhylogenyNode node ) {\r
+        if ( !node.getNodeData().isHasTaxonomy() ) {\r
+            return "";\r
+        }\r
+        else if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getScientificName() ) ) {\r
+            return node.getNodeData().getTaxonomy().getScientificName();\r
+        }\r
+        if ( !ForesterUtil.isEmpty( node.getNodeData().getTaxonomy().getTaxonomyCode() ) ) {\r
+            return node.getNodeData().getTaxonomy().getTaxonomyCode();\r
+        }\r
+        else {\r
+            return node.getNodeData().getTaxonomy().getCommonName();\r
+        }\r
+    }\r
+\r
+    /**\r
+     * Convenience method for display purposes.\r
+     * Not intended for algorithms.\r
+     */\r
+    public static String getTaxonomyIdentifier( final PhylogenyNode node ) {\r
+        if ( !node.getNodeData().isHasTaxonomy() || ( node.getNodeData().getTaxonomy().getIdentifier() == null ) ) {\r
+            return "";\r
+        }\r
+        return node.getNodeData().getTaxonomy().getIdentifier().getValue();\r
+    }\r
+\r
+    public final static boolean isAllDecendentsAreDuplications( final PhylogenyNode n ) {\r
+        if ( n.isExternal() ) {\r
+            return true;\r
+        }\r
+        else {\r
+            if ( n.isDuplication() ) {\r
+                for( final PhylogenyNode desc : n.getDescendants() ) {\r
+                    if ( !isAllDecendentsAreDuplications( desc ) ) {\r
+                        return false;\r
+                    }\r
+                }\r
+                return true;\r
+            }\r
+            else {\r
+                return false;\r
+            }\r
+        }\r
+    }\r
+\r
+    public static boolean isHasExternalDescendant( final PhylogenyNode node ) {\r
+        for( int i = 0; i < node.getNumberOfDescendants(); ++i ) {\r
+            if ( node.getChildNode( i ).isExternal() ) {\r
+                return true;\r
+            }\r
+        }\r
+        return false;\r
+    }\r
+\r
+    /*\r
+     * This is case insensitive.\r
+     *\r
+     */\r
+    public synchronized static boolean isTaxonomyHasIdentifierOfGivenProvider( final Taxonomy tax,\r
+                                                                               final String[] providers ) {\r
+        if ( ( tax.getIdentifier() != null ) && !ForesterUtil.isEmpty( tax.getIdentifier().getProvider() ) ) {\r
+            final String my_tax_prov = tax.getIdentifier().getProvider();\r
+            for( final String provider : providers ) {\r
+                if ( provider.equalsIgnoreCase( my_tax_prov ) ) {\r
+                    return true;\r
+                }\r
+            }\r
+            return false;\r
+        }\r
+        else {\r
+            return false;\r
+        }\r
+    }\r
+\r
+    public static void midpointRoot( final Phylogeny phylogeny ) {\r
+        if ( ( phylogeny.getNumberOfExternalNodes() < 2 ) || ( calculateMaxDistanceToRoot( phylogeny ) <= 0 ) ) {\r
+            return;\r
+        }\r
+        int counter = 0;\r
+        final int total_nodes = phylogeny.getNodeCount();\r
+        while ( true ) {\r
+            if ( ++counter > total_nodes ) {\r
+                throw new RuntimeException( "this should not have happened: midpoint rooting does not converge" );\r
+            }\r
+            PhylogenyNode a = null;\r
+            double da = 0;\r
+            double db = 0;\r
+            for( int i = 0; i < phylogeny.getRoot().getNumberOfDescendants(); ++i ) {\r
+                final PhylogenyNode f = getFurthestDescendant( phylogeny.getRoot().getChildNode( i ) );\r
+                final double df = getDistance( f, phylogeny.getRoot() );\r
+                if ( df > 0 ) {\r
+                    if ( df > da ) {\r
+                        db = da;\r
+                        da = df;\r
+                        a = f;\r
+                    }\r
+                    else if ( df > db ) {\r
+                        db = df;\r
+                    }\r
+                }\r
+            }\r
+            final double diff = da - db;\r
+            if ( diff < 0.000001 ) {\r
+                break;\r
+            }\r
+            double x = da - ( diff / 2.0 );\r
+            while ( ( x > a.getDistanceToParent() ) && !a.isRoot() ) {\r
+                x -= ( a.getDistanceToParent() > 0 ? a.getDistanceToParent() : 0 );\r
+                a = a.getParent();\r
+            }\r
+            phylogeny.reRoot( a, x );\r
+        }\r
+        phylogeny.recalculateNumberOfExternalDescendants( true );\r
+    }\r
+\r
+    public static void normalizeBootstrapValues( final Phylogeny phylogeny,\r
+                                                 final double max_bootstrap_value,\r
+                                                 final double max_normalized_value ) {\r
+        for( final PhylogenyNodeIterator iter = phylogeny.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            if ( node.isInternal() ) {\r
+                final double confidence = getConfidenceValue( node );\r
+                if ( confidence != Confidence.CONFIDENCE_DEFAULT_VALUE ) {\r
+                    if ( confidence >= max_bootstrap_value ) {\r
+                        setBootstrapConfidence( node, max_normalized_value );\r
+                    }\r
+                    else {\r
+                        setBootstrapConfidence( node, ( confidence * max_normalized_value ) / max_bootstrap_value );\r
+                    }\r
+                }\r
+            }\r
+        }\r
+    }\r
+\r
+    public static List<PhylogenyNode> obtainAllNodesAsList( final Phylogeny phy ) {\r
+        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();\r
+        if ( phy.isEmpty() ) {\r
+            return nodes;\r
+        }\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            nodes.add( iter.next() );\r
+        }\r
+        return nodes;\r
+    }\r
+\r
+    /**\r
+     * Returns a map of distinct taxonomies of\r
+     * all external nodes of node.\r
+     * If at least one of the external nodes has no taxonomy,\r
+     * null is returned.\r
+     *\r
+     */\r
+    public static Map<Taxonomy, Integer> obtainDistinctTaxonomyCounts( final PhylogenyNode node ) {\r
+        final List<PhylogenyNode> descs = node.getAllExternalDescendants();\r
+        final Map<Taxonomy, Integer> tax_map = new HashMap<Taxonomy, Integer>();\r
+        for( final PhylogenyNode n : descs ) {\r
+            if ( !n.getNodeData().isHasTaxonomy() || n.getNodeData().getTaxonomy().isEmpty() ) {\r
+                return null;\r
+            }\r
+            final Taxonomy t = n.getNodeData().getTaxonomy();\r
+            if ( tax_map.containsKey( t ) ) {\r
+                tax_map.put( t, tax_map.get( t ) + 1 );\r
+            }\r
+            else {\r
+                tax_map.put( t, 1 );\r
+            }\r
+        }\r
+        return tax_map;\r
+    }\r
+\r
+    /**\r
+     * Arranges the order of childern for each node of this Phylogeny in such a\r
+     * way that either the branch with more children is on top (right) or on\r
+     * bottom (left), dependent on the value of boolean order.\r
+     *\r
+     * @param order\r
+     *            decides in which direction to order\r
+     * @param pri\r
+     */\r
+    public static void orderAppearance( final PhylogenyNode n,\r
+                                        final boolean order,\r
+                                        final boolean order_ext_alphabetically,\r
+                                        final DESCENDANT_SORT_PRIORITY pri ) {\r
+        if ( n.isExternal() ) {\r
+            return;\r
+        }\r
+        else {\r
+            PhylogenyNode temp = null;\r
+            if ( ( n.getNumberOfDescendants() == 2 )\r
+                    && ( n.getChildNode1().getNumberOfExternalNodes() != n.getChildNode2().getNumberOfExternalNodes() )\r
+                    && ( ( n.getChildNode1().getNumberOfExternalNodes() < n.getChildNode2().getNumberOfExternalNodes() ) == order ) ) {\r
+                temp = n.getChildNode1();\r
+                n.setChild1( n.getChildNode2() );\r
+                n.setChild2( temp );\r
+            }\r
+            else if ( order_ext_alphabetically ) {\r
+                boolean all_ext = true;\r
+                for( final PhylogenyNode i : n.getDescendants() ) {\r
+                    if ( !i.isExternal() ) {\r
+                        all_ext = false;\r
+                        break;\r
+                    }\r
+                }\r
+                if ( all_ext ) {\r
+                    PhylogenyMethods.sortNodeDescendents( n, pri );\r
+                }\r
+            }\r
+            for( int i = 0; i < n.getNumberOfDescendants(); ++i ) {\r
+                orderAppearance( n.getChildNode( i ), order, order_ext_alphabetically, pri );\r
+            }\r
+        }\r
+    }\r
+\r
+    public static void postorderBranchColorAveragingExternalNodeBased( final Phylogeny p ) {\r
+        for( final PhylogenyNodeIterator iter = p.iteratorPostorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            double red = 0.0;\r
+            double green = 0.0;\r
+            double blue = 0.0;\r
+            int n = 0;\r
+            if ( node.isInternal() ) {\r
+                //for( final PhylogenyNodeIterator iterator = node.iterateChildNodesForward(); iterator.hasNext(); ) {\r
+                for( int i = 0; i < node.getNumberOfDescendants(); ++i ) {\r
+                    final PhylogenyNode child_node = node.getChildNode( i );\r
+                    final Color child_color = getBranchColorValue( child_node );\r
+                    if ( child_color != null ) {\r
+                        ++n;\r
+                        red += child_color.getRed();\r
+                        green += child_color.getGreen();\r
+                        blue += child_color.getBlue();\r
+                    }\r
+                }\r
+                setBranchColorValue( node,\r
+                                     new Color( ForesterUtil.roundToInt( red / n ),\r
+                                                ForesterUtil.roundToInt( green / n ),\r
+                                                ForesterUtil.roundToInt( blue / n ) ) );\r
+            }\r
+        }\r
+    }\r
+\r
+    public static final void preOrderReId( final Phylogeny phy ) {\r
+        if ( phy.isEmpty() ) {\r
+            return;\r
+        }\r
+        phy.setIdToNodeMap( null );\r
+        long i = PhylogenyNode.getNodeCount();\r
+        for( final PhylogenyNodeIterator it = phy.iteratorPreorder(); it.hasNext(); ) {\r
+            it.next().setId( i++ );\r
+        }\r
+        PhylogenyNode.setNodeCount( i );\r
+    }\r
+\r
+    public final static Phylogeny[] readPhylogenies( final PhylogenyParser parser, final File file ) throws IOException {\r
+        final PhylogenyFactory factory = ParserBasedPhylogenyFactory.getInstance();\r
+        final Phylogeny[] trees = factory.create( file, parser );\r
+        if ( ( trees == null ) || ( trees.length == 0 ) ) {\r
+            throw new PhylogenyParserException( "Unable to parse phylogeny from file: " + file );\r
+        }\r
+        return trees;\r
+    }\r
+\r
+    public final static Phylogeny[] readPhylogenies( final PhylogenyParser parser, final List<File> files )\r
+            throws IOException {\r
+        final List<Phylogeny> tree_list = new ArrayList<Phylogeny>();\r
+        for( final File file : files ) {\r
+            final PhylogenyFactory factory = ParserBasedPhylogenyFactory.getInstance();\r
+            final Phylogeny[] trees = factory.create( file, parser );\r
+            if ( ( trees == null ) || ( trees.length == 0 ) ) {\r
+                throw new PhylogenyParserException( "Unable to parse phylogeny from file: " + file );\r
+            }\r
+            tree_list.addAll( Arrays.asList( trees ) );\r
+        }\r
+        return tree_list.toArray( new Phylogeny[ tree_list.size() ] );\r
+    }\r
+\r
+    public static void removeNode( final PhylogenyNode remove_me, final Phylogeny phylogeny ) {\r
+        if ( remove_me.isRoot() ) {\r
+            if ( remove_me.getNumberOfDescendants() == 1 ) {\r
+                final PhylogenyNode desc = remove_me.getDescendants().get( 0 );\r
+                desc.setDistanceToParent( addPhylogenyDistances( remove_me.getDistanceToParent(),\r
+                                                                 desc.getDistanceToParent() ) );\r
+                desc.setParent( null );\r
+                phylogeny.setRoot( desc );\r
+                phylogeny.clearHashIdToNodeMap();\r
+            }\r
+            else {\r
+                throw new IllegalArgumentException( "attempt to remove a root node with more than one descendants" );\r
+            }\r
+        }\r
+        else if ( remove_me.isExternal() ) {\r
+            phylogeny.deleteSubtree( remove_me, false );\r
+            phylogeny.clearHashIdToNodeMap();\r
+            phylogeny.externalNodesHaveChanged();\r
+        }\r
+        else {\r
+            final PhylogenyNode parent = remove_me.getParent();\r
+            final List<PhylogenyNode> descs = remove_me.getDescendants();\r
+            parent.removeChildNode( remove_me );\r
+            for( final PhylogenyNode desc : descs ) {\r
+                parent.addAsChild( desc );\r
+                desc.setDistanceToParent( addPhylogenyDistances( remove_me.getDistanceToParent(),\r
+                                                                 desc.getDistanceToParent() ) );\r
+            }\r
+            remove_me.setParent( null );\r
+            phylogeny.clearHashIdToNodeMap();\r
+            phylogeny.externalNodesHaveChanged();\r
+        }\r
+    }\r
+\r
+    public static List<PhylogenyNode> searchData( final String query,\r
+                                                  final Phylogeny phy,\r
+                                                  final boolean case_sensitive,\r
+                                                  final boolean partial,\r
+                                                  final boolean regex,\r
+                                                  final boolean search_domains ) {\r
+        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();\r
+        if ( phy.isEmpty() || ( query == null ) ) {\r
+            return nodes;\r
+        }\r
+        if ( ForesterUtil.isEmpty( query ) ) {\r
+            return nodes;\r
+        }\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            boolean match = false;\r
+            if ( match( node.getName(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            else if ( node.getNodeData().isHasTaxonomy()\r
+                    && match( node.getNodeData().getTaxonomy().getTaxonomyCode(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            else if ( node.getNodeData().isHasTaxonomy()\r
+                    && match( node.getNodeData().getTaxonomy().getCommonName(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            else if ( node.getNodeData().isHasTaxonomy()\r
+                    && match( node.getNodeData().getTaxonomy().getScientificName(),\r
+                              query,\r
+                              case_sensitive,\r
+                              partial,\r
+                              regex ) ) {\r
+                match = true;\r
+            }\r
+            else if ( node.getNodeData().isHasTaxonomy()\r
+                    && ( node.getNodeData().getTaxonomy().getIdentifier() != null )\r
+                    && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(),\r
+                              query,\r
+                              case_sensitive,\r
+                              partial,\r
+                              regex ) ) {\r
+                match = true;\r
+            }\r
+            else if ( node.getNodeData().isHasTaxonomy() && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) {\r
+                final List<String> syns = node.getNodeData().getTaxonomy().getSynonyms();\r
+                I: for( final String syn : syns ) {\r
+                    if ( match( syn, query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break I;\r
+                    }\r
+                }\r
+            }\r
+            if ( !match && node.getNodeData().isHasSequence()\r
+                    && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            if ( !match && node.getNodeData().isHasSequence()\r
+                    && match( node.getNodeData().getSequence().getGeneName(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            if ( !match && node.getNodeData().isHasSequence()\r
+                    && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial, regex ) ) {\r
+                match = true;\r
+            }\r
+            if ( !match\r
+                    && node.getNodeData().isHasSequence()\r
+                    && ( node.getNodeData().getSequence().getAccession() != null )\r
+                    && match( node.getNodeData().getSequence().getAccession().getValue(),\r
+                              query,\r
+                              case_sensitive,\r
+                              partial,\r
+                              regex ) ) {\r
+                match = true;\r
+            }\r
+            if ( search_domains && !match && node.getNodeData().isHasSequence()\r
+                    && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) {\r
+                final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture();\r
+                I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) {\r
+                    if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break I;\r
+                    }\r
+                }\r
+            }\r
+            if ( !match && node.getNodeData().isHasSequence()\r
+                    && ( node.getNodeData().getSequence().getAnnotations() != null ) ) {\r
+                for( final Annotation ann : node.getNodeData().getSequence().getAnnotations() ) {\r
+                    if ( match( ann.getDesc(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break;\r
+                    }\r
+                    if ( match( ann.getRef(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break;\r
+                    }\r
+                }\r
+            }\r
+            if ( !match && node.getNodeData().isHasSequence()\r
+                    && ( node.getNodeData().getSequence().getCrossReferences() != null ) ) {\r
+                for( final Accession x : node.getNodeData().getSequence().getCrossReferences() ) {\r
+                    if ( match( x.getComment(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break;\r
+                    }\r
+                    if ( match( x.getSource(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break;\r
+                    }\r
+                    if ( match( x.getValue(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break;\r
+                    }\r
+                }\r
+            }\r
+            //\r
+            if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) {\r
+                Iterator<String> it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator();\r
+                I: while ( it.hasNext() ) {\r
+                    if ( match( it.next(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break I;\r
+                    }\r
+                }\r
+                it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator();\r
+                I: while ( it.hasNext() ) {\r
+                    if ( match( it.next(), query, case_sensitive, partial, regex ) ) {\r
+                        match = true;\r
+                        break I;\r
+                    }\r
+                }\r
+            }\r
+            if ( match ) {\r
+                nodes.add( node );\r
+            }\r
+        }\r
+        return nodes;\r
+    }\r
+\r
+    public static List<PhylogenyNode> searchDataLogicalAnd( final String[] queries,\r
+                                                            final Phylogeny phy,\r
+                                                            final boolean case_sensitive,\r
+                                                            final boolean partial,\r
+                                                            final boolean search_domains ) {\r
+        final List<PhylogenyNode> nodes = new ArrayList<PhylogenyNode>();\r
+        if ( phy.isEmpty() || ( queries == null ) || ( queries.length < 1 ) ) {\r
+            return nodes;\r
+        }\r
+        for( final PhylogenyNodeIterator iter = phy.iteratorPreorder(); iter.hasNext(); ) {\r
+            final PhylogenyNode node = iter.next();\r
+            boolean all_matched = true;\r
+            for( final String query : queries ) {\r
+                boolean match = false;\r
+                if ( ForesterUtil.isEmpty( query ) ) {\r
+                    continue;\r
+                }\r
+                if ( match( node.getName(), query, case_sensitive, partial, false ) ) {\r
+                    match = true;\r
+                }\r
+                else if ( node.getNodeData().isHasTaxonomy()\r
+                        && match( node.getNodeData().getTaxonomy().getTaxonomyCode(),\r
+                                  query,\r
+                                  case_sensitive,\r
+                                  partial,\r
+                                  false ) ) {\r
+                    match = true;\r
+                }\r
+                else if ( node.getNodeData().isHasTaxonomy()\r
+                        && match( node.getNodeData().getTaxonomy().getCommonName(),\r
+                                  query,\r
+                                  case_sensitive,\r
+                                  partial,\r
+                                  false ) ) {\r
+                    match = true;\r
+                }\r
+                else if ( node.getNodeData().isHasTaxonomy()\r
+                        && match( node.getNodeData().getTaxonomy().getScientificName(),\r
+                                  query,\r
+                                  case_sensitive,\r
+                                  partial,\r
+                                  false ) ) {\r
+                    match = true;\r
+                }\r
+                else if ( node.getNodeData().isHasTaxonomy()\r
+                        && ( node.getNodeData().getTaxonomy().getIdentifier() != null )\r
+                        && match( node.getNodeData().getTaxonomy().getIdentifier().getValue(),\r
+                                  query,\r
+                                  case_sensitive,\r
+                                  partial,\r
+                                  false ) ) {\r
+                    match = true;\r
+                }\r
+                else if ( node.getNodeData().isHasTaxonomy()\r
+                        && !node.getNodeData().getTaxonomy().getSynonyms().isEmpty() ) {\r
+                    final List<String> syns = node.getNodeData().getTaxonomy().getSynonyms();\r
+                    I: for( final String syn : syns ) {\r
+                        if ( match( syn, query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break I;\r
+                        }\r
+                    }\r
+                }\r
+                if ( !match && node.getNodeData().isHasSequence()\r
+                        && match( node.getNodeData().getSequence().getName(), query, case_sensitive, partial, false ) ) {\r
+                    match = true;\r
+                }\r
+                if ( !match\r
+                        && node.getNodeData().isHasSequence()\r
+                        && match( node.getNodeData().getSequence().getGeneName(), query, case_sensitive, partial, false ) ) {\r
+                    match = true;\r
+                }\r
+                if ( !match && node.getNodeData().isHasSequence()\r
+                        && match( node.getNodeData().getSequence().getSymbol(), query, case_sensitive, partial, false ) ) {\r
+                    match = true;\r
+                }\r
+                if ( !match\r
+                        && node.getNodeData().isHasSequence()\r
+                        && ( node.getNodeData().getSequence().getAccession() != null )\r
+                        && match( node.getNodeData().getSequence().getAccession().getValue(),\r
+                                  query,\r
+                                  case_sensitive,\r
+                                  partial,\r
+                                  false ) ) {\r
+                    match = true;\r
+                }\r
+                if ( search_domains && !match && node.getNodeData().isHasSequence()\r
+                        && ( node.getNodeData().getSequence().getDomainArchitecture() != null ) ) {\r
+                    final DomainArchitecture da = node.getNodeData().getSequence().getDomainArchitecture();\r
+                    I: for( int i = 0; i < da.getNumberOfDomains(); ++i ) {\r
+                        if ( match( da.getDomain( i ).getName(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break I;\r
+                        }\r
+                    }\r
+                }\r
+                //\r
+                if ( !match && node.getNodeData().isHasSequence()\r
+                        && ( node.getNodeData().getSequence().getAnnotations() != null ) ) {\r
+                    for( final Annotation ann : node.getNodeData().getSequence().getAnnotations() ) {\r
+                        if ( match( ann.getDesc(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break;\r
+                        }\r
+                        if ( match( ann.getRef(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break;\r
+                        }\r
+                    }\r
+                }\r
+                if ( !match && node.getNodeData().isHasSequence()\r
+                        && ( node.getNodeData().getSequence().getCrossReferences() != null ) ) {\r
+                    for( final Accession x : node.getNodeData().getSequence().getCrossReferences() ) {\r
+                        if ( match( x.getComment(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break;\r
+                        }\r
+                        if ( match( x.getSource(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break;\r
+                        }\r
+                        if ( match( x.getValue(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break;\r
+                        }\r
+                    }\r
+                }\r
+                //\r
+                if ( !match && ( node.getNodeData().getBinaryCharacters() != null ) ) {\r
+                    Iterator<String> it = node.getNodeData().getBinaryCharacters().getPresentCharacters().iterator();\r
+                    I: while ( it.hasNext() ) {\r
+                        if ( match( it.next(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break I;\r
+                        }\r
+                    }\r
+                    it = node.getNodeData().getBinaryCharacters().getGainedCharacters().iterator();\r
+                    I: while ( it.hasNext() ) {\r
+                        if ( match( it.next(), query, case_sensitive, partial, false ) ) {\r
+                            match = true;\r
+                            break I;\r
+                        }\r
+                    }\r
+                }\r
+                if ( !match ) {\r
+                    all_matched = false;\r
+                    break;\r
+                }\r
+            }\r
+            if ( all_matched ) {\r
+                nodes.add( node );\r
+            }\r
+        }\r
+        return nodes;\r
+    }\r
+\r
+    public static void setAllIndicatorsToZero( final Phylogeny phy ) {\r
+        for( final PhylogenyNodeIterator it = phy.iteratorPostorder(); it.hasNext(); ) {\r
+            it.next().setIndicator( ( byte ) 0 );\r
+        }\r
+    }\r
+\r
+    /**\r
+     * Convenience method.\r
+     * Sets value for the first confidence value (created if not present, values overwritten otherwise).\r
+     */\r
+    public static void setBootstrapConfidence( final PhylogenyNode node, final double bootstrap_confidence_value ) {\r
+        setConfidence( node, bootstrap_confidence_value, "bootstrap" );\r
+    }\r
+\r
+    public static void setBranchColorValue( final PhylogenyNode node, final Color color ) {\r
+        if ( node.getBranchData().getBranchColor() == null ) {\r
+            node.getBranchData().setBranchColor( new BranchColor() );\r
+        }\r
+        node.getBranchData().getBranchColor().setValue( color );\r
+    }\r
+\r
+    /**\r
+     * Convenience method\r
+     */\r
+    public static void setBranchWidthValue( final PhylogenyNode node, final double branch_width_value ) {\r
+        node.getBranchData().setBranchWidth( new BranchWidth( branch_width_value ) );\r
+    }\r
+\r
+    /**\r
+     * Convenience method.\r
+     * Sets value for the first confidence value (created if not present, values overwritten otherwise).\r
+     */\r
+    public static void setConfidence( final PhylogenyNode node, final double confidence_value ) {\r
+        setConfidence( node, confidence_value, "" );\r
+    }\r
+\r
+    /**\r
+     * Convenience method.\r
+     * Sets value for the first confidence value (created if not present, values overwritten otherwise).\r
+     */\r
+    public static void setConfidence( final PhylogenyNode node, final double confidence_value, final String type ) {\r
+        Confidence c = null;\r
+        if ( node.getBranchData().getNumberOfConfidences() > 0 ) {\r
+            c = node.getBranchData().getConfidence( 0 );\r
+        }\r
+        else {\r
+            c = new Confidence();\r
+            node.getBranchData().addConfidence( c );\r
+        }\r
+        c.setType( type );\r
+        c.setValue( confidence_value );\r
+    }\r
+\r
+    public static void setScientificName( final PhylogenyNode node, final String scientific_name ) {\r
+        if ( !node.getNodeData().isHasTaxonomy() ) {\r
+            node.getNodeData().setTaxonomy( new Taxonomy() );\r
+        }\r
+        node.getNodeData().getTaxonomy().setScientificName( scientific_name );\r
+    }\r
+\r
+    /**\r
+     * Convenience method to set the taxonomy code of a phylogeny node.\r
+     *\r
+     *\r
+     * @param node\r
+     * @param taxonomy_code\r
+     * @throws PhyloXmlDataFormatException\r
+     */\r
+    public static void setTaxonomyCode( final PhylogenyNode node, final String taxonomy_code )\r
+            throws PhyloXmlDataFormatException {\r
+        if ( !node.getNodeData().isHasTaxonomy() ) {\r
+            node.getNodeData().setTaxonomy( new Taxonomy() );\r
+        }\r
+        node.getNodeData().getTaxonomy().setTaxonomyCode( taxonomy_code );\r
+    }\r
+\r
+    final static public void sortNodeDescendents( final PhylogenyNode node, final DESCENDANT_SORT_PRIORITY pri ) {\r
+        Comparator<PhylogenyNode> c;\r
+        switch ( pri ) {\r
+            case SEQUENCE:\r
+                c = new PhylogenyNodeSortSequencePriority();\r
+                break;\r
+            case NODE_NAME:\r
+                c = new PhylogenyNodeSortNodeNamePriority();\r
+                break;\r
+            default:\r
+                c = new PhylogenyNodeSortTaxonomyPriority();\r
+        }\r
+        final List<PhylogenyNode> descs = node.getDescendants();\r
+        Collections.sort( descs, c );\r
+        int i = 0;\r
+        for( final PhylogenyNode desc : descs ) {\r
+            node.setChildNode( i++, desc );\r
+        }\r
+    }\r
+\r
+    /**\r
+     * Removes from Phylogeny to_be_stripped all external Nodes which are\r
+     * associated with a species NOT found in Phylogeny reference.\r
+     *\r
+     * @param reference\r
+     *            a reference Phylogeny\r
+     * @param to_be_stripped\r
+     *            Phylogeny to be stripped\r
+     * @return nodes removed from to_be_stripped\r
+     */\r
+    public static List<PhylogenyNode> taxonomyBasedDeletionOfExternalNodes( final Phylogeny reference,\r
+                                                                            final Phylogeny to_be_stripped ) {\r
+        final Set<String> ref_ext_taxo = new HashSet<String>();\r
+        for( final PhylogenyNodeIterator it = reference.iteratorExternalForward(); it.hasNext(); ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                throw new IllegalArgumentException( "no taxonomic data in node: " + n );\r
+            }\r
+            if ( !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getScientificName() ) ) {\r
+                ref_ext_taxo.add( n.getNodeData().getTaxonomy().getScientificName() );\r
+            }\r
+            if ( !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getTaxonomyCode() ) ) {\r
+                ref_ext_taxo.add( n.getNodeData().getTaxonomy().getTaxonomyCode() );\r
+            }\r
+            if ( ( n.getNodeData().getTaxonomy().getIdentifier() != null )\r
+                    && !ForesterUtil.isEmpty( n.getNodeData().getTaxonomy().getIdentifier().getValue() ) ) {\r
+                ref_ext_taxo.add( n.getNodeData().getTaxonomy().getIdentifier().getValuePlusProvider() );\r
+            }\r
+        }\r
+        final ArrayList<PhylogenyNode> nodes_to_delete = new ArrayList<PhylogenyNode>();\r
+        for( final PhylogenyNodeIterator it = to_be_stripped.iteratorExternalForward(); it.hasNext(); ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                nodes_to_delete.add( n );\r
+            }\r
+            else if ( !( ref_ext_taxo.contains( n.getNodeData().getTaxonomy().getScientificName() ) )\r
+                    && !( ref_ext_taxo.contains( n.getNodeData().getTaxonomy().getTaxonomyCode() ) )\r
+                    && !( ( n.getNodeData().getTaxonomy().getIdentifier() != null ) && ref_ext_taxo.contains( n\r
+                                                                                                              .getNodeData().getTaxonomy().getIdentifier().getValuePlusProvider() ) ) ) {\r
+                nodes_to_delete.add( n );\r
+            }\r
+        }\r
+        for( final PhylogenyNode n : nodes_to_delete ) {\r
+            to_be_stripped.deleteSubtree( n, true );\r
+        }\r
+        to_be_stripped.clearHashIdToNodeMap();\r
+        to_be_stripped.externalNodesHaveChanged();\r
+        return nodes_to_delete;\r
+    }\r
+\r
+    final static public void transferInternalNamesToBootstrapSupport( final Phylogeny phy ) {\r
+        final PhylogenyNodeIterator it = phy.iteratorPostorder();\r
+        while ( it.hasNext() ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( !n.isExternal() && !ForesterUtil.isEmpty( n.getName() ) ) {\r
+                double value = -1;\r
+                try {\r
+                    value = Double.parseDouble( n.getName() );\r
+                }\r
+                catch ( final NumberFormatException e ) {\r
+                    throw new IllegalArgumentException( "failed to parse number from [" + n.getName() + "]: "\r
+                            + e.getLocalizedMessage() );\r
+                }\r
+                if ( value >= 0.0 ) {\r
+                    n.getBranchData().addConfidence( new Confidence( value, "bootstrap" ) );\r
+                    n.setName( "" );\r
+                }\r
+            }\r
+        }\r
+    }\r
+\r
+    final static public boolean isInternalNamesLookLikeConfidences( final Phylogeny phy ) {\r
+        final PhylogenyNodeIterator it = phy.iteratorPostorder();\r
+        while ( it.hasNext() ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( !n.isExternal() && !n.isRoot() ) {\r
+                if ( !ForesterUtil.isEmpty( n.getName() ) ) {\r
+                    double value = -1;\r
+                    try {\r
+                        value = Double.parseDouble( n.getName() );\r
+                    }\r
+                    catch ( final NumberFormatException e ) {\r
+                        return false;\r
+                    }\r
+                    if ( ( value < 0.0 ) || ( value > 100 ) ) {\r
+                        return false;\r
+                    }\r
+                }\r
+            }\r
+        }\r
+        return true;\r
+    }\r
+\r
+    final static public void transferInternalNodeNamesToConfidence( final Phylogeny phy, final String confidence_type ) {\r
+        final PhylogenyNodeIterator it = phy.iteratorPostorder();\r
+        while ( it.hasNext() ) {\r
+            transferInternalNodeNameToConfidence( confidence_type, it.next() );\r
+        }\r
+    }\r
+\r
+    private static void transferInternalNodeNameToConfidence( final String confidence_type, final PhylogenyNode n ) {\r
+        if ( !n.isExternal() && !n.getBranchData().isHasConfidences() ) {\r
+            if ( !ForesterUtil.isEmpty( n.getName() ) ) {\r
+                double d = -1.0;\r
+                try {\r
+                    d = Double.parseDouble( n.getName() );\r
+                }\r
+                catch ( final Exception e ) {\r
+                    d = -1.0;\r
+                }\r
+                if ( d >= 0.0 ) {\r
+                    n.getBranchData().addConfidence( new Confidence( d, confidence_type ) );\r
+                    n.setName( "" );\r
+                }\r
+            }\r
+        }\r
+    }\r
+\r
+    final static public void transferNodeNameToField( final Phylogeny phy,\r
+                                                      final PhylogenyNodeField field,\r
+                                                      final boolean external_only ) throws PhyloXmlDataFormatException {\r
+        final PhylogenyNodeIterator it = phy.iteratorPostorder();\r
+        while ( it.hasNext() ) {\r
+            final PhylogenyNode n = it.next();\r
+            if ( external_only && n.isInternal() ) {\r
+                continue;\r
+            }\r
+            final String name = n.getName().trim();\r
+            if ( !ForesterUtil.isEmpty( name ) ) {\r
+                switch ( field ) {\r
+                    case TAXONOMY_CODE:\r
+                        n.setName( "" );\r
+                        setTaxonomyCode( n, name );\r
+                        break;\r
+                    case TAXONOMY_SCIENTIFIC_NAME:\r
+                        n.setName( "" );\r
+                        if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                            n.getNodeData().setTaxonomy( new Taxonomy() );\r
+                        }\r
+                        n.getNodeData().getTaxonomy().setScientificName( name );\r
+                        break;\r
+                    case TAXONOMY_COMMON_NAME:\r
+                        n.setName( "" );\r
+                        if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                            n.getNodeData().setTaxonomy( new Taxonomy() );\r
+                        }\r
+                        n.getNodeData().getTaxonomy().setCommonName( name );\r
+                        break;\r
+                    case SEQUENCE_SYMBOL:\r
+                        n.setName( "" );\r
+                        if ( !n.getNodeData().isHasSequence() ) {\r
+                            n.getNodeData().setSequence( new Sequence() );\r
+                        }\r
+                        n.getNodeData().getSequence().setSymbol( name );\r
+                        break;\r
+                    case SEQUENCE_NAME:\r
+                        n.setName( "" );\r
+                        if ( !n.getNodeData().isHasSequence() ) {\r
+                            n.getNodeData().setSequence( new Sequence() );\r
+                        }\r
+                        n.getNodeData().getSequence().setName( name );\r
+                        break;\r
+                    case TAXONOMY_ID_UNIPROT_1: {\r
+                        if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                            n.getNodeData().setTaxonomy( new Taxonomy() );\r
+                        }\r
+                        String id = name;\r
+                        final int i = name.indexOf( '_' );\r
+                        if ( i > 0 ) {\r
+                            id = name.substring( 0, i );\r
+                        }\r
+                        else {\r
+                            n.setName( "" );\r
+                        }\r
+                        n.getNodeData().getTaxonomy()\r
+                        .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) );\r
+                        break;\r
+                    }\r
+                    case TAXONOMY_ID_UNIPROT_2: {\r
+                        if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                            n.getNodeData().setTaxonomy( new Taxonomy() );\r
+                        }\r
+                        String id = name;\r
+                        final int i = name.indexOf( '_' );\r
+                        if ( i > 0 ) {\r
+                            id = name.substring( i + 1, name.length() );\r
+                        }\r
+                        else {\r
+                            n.setName( "" );\r
+                        }\r
+                        n.getNodeData().getTaxonomy()\r
+                        .setIdentifier( new Identifier( id, PhyloXmlUtil.UNIPROT_TAX_PROVIDER ) );\r
+                        break;\r
+                    }\r
+                    case TAXONOMY_ID: {\r
+                        if ( !n.getNodeData().isHasTaxonomy() ) {\r
+                            n.getNodeData().setTaxonomy( new Taxonomy() );\r
+                        }\r
+                        n.getNodeData().getTaxonomy().setIdentifier( new Identifier( name ) );\r
+                        break;\r
+                    }\r
+                }\r
+            }\r
+        }\r
+    }\r
+\r
+    static double addPhylogenyDistances( final double a, final double b ) {\r
+        if ( ( a >= 0.0 ) && ( b >= 0.0 ) ) {\r
+            return a + b;\r
+        }\r
+        else if ( a >= 0.0 ) {\r
+            return a;\r
+        }\r
+        else if ( b >= 0.0 ) {\r
+            return b;\r
+        }\r
+        return PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT;\r
+    }\r
+\r
+    static double calculateDistanceToAncestor( final PhylogenyNode anc, PhylogenyNode desc ) {\r
+        double d = 0;\r
+        boolean all_default = true;\r
+        while ( anc != desc ) {\r
+            if ( desc.getDistanceToParent() != PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT ) {\r
+                d += desc.getDistanceToParent();\r
+                if ( all_default ) {\r
+                    all_default = false;\r
+                }\r
+            }\r
+            desc = desc.getParent();\r
+        }\r
+        if ( all_default ) {\r
+            return PhylogenyDataUtil.BRANCH_LENGTH_DEFAULT;\r
+        }\r
+        return d;\r
+    }\r
+\r
+    /**\r
+     * Deep copies the phylogeny originating from this node.\r
+     */\r
+    static PhylogenyNode copySubTree( final PhylogenyNode source ) {\r
+        if ( source == null ) {\r
+            return null;\r
+        }\r
+        else {\r
+            final PhylogenyNode newnode = source.copyNodeData();\r
+            if ( !source.isExternal() ) {\r
+                for( int i = 0; i < source.getNumberOfDescendants(); ++i ) {\r
+                    newnode.setChildNode( i, PhylogenyMethods.copySubTree( source.getChildNode( i ) ) );\r
+                }\r
+            }\r
+            return newnode;\r
+        }\r
+    }\r
+\r
+    /**\r
+     * Shallow copies the phylogeny originating from this node.\r
+     */\r
+    static PhylogenyNode copySubTreeShallow( final PhylogenyNode source ) {\r
+        if ( source == null ) {\r
+            return null;\r
+        }\r
+        else {\r
+            final PhylogenyNode newnode = source.copyNodeDataShallow();\r
+            if ( !source.isExternal() ) {\r
+                for( int i = 0; i < source.getNumberOfDescendants(); ++i ) {\r
+                    newnode.setChildNode( i, PhylogenyMethods.copySubTreeShallow( source.getChildNode( i ) ) );\r
+                }\r
+            }\r
+            return newnode;\r
+        }\r
+    }\r
+\r
+    private final static List<PhylogenyNode> divideIntoSubTreesHelper( final PhylogenyNode node,\r
+                                                                       final double min_distance_to_root ) {\r
+        final List<PhylogenyNode> l = new ArrayList<PhylogenyNode>();\r
+        final PhylogenyNode r = moveTowardsRoot( node, min_distance_to_root );\r
+        for( final PhylogenyNode ext : r.getAllExternalDescendants() ) {\r
+            if ( ext.getIndicator() != 0 ) {\r
+                throw new RuntimeException( "this should not have happened" );\r
+            }\r
+            ext.setIndicator( ( byte ) 1 );\r
+            l.add( ext );\r
+        }\r
+        return l;\r
+    }\r
+\r
+    /**\r
+     * Calculates the distance between PhylogenyNodes n1 and n2.\r
+     * PRECONDITION: n1 is a descendant of n2.\r
+     *\r
+     * @param n1\r
+     *            a descendant of n2\r
+     * @param n2\r
+     * @return distance between n1 and n2\r
+     */\r
+    private static double getDistance( PhylogenyNode n1, final PhylogenyNode n2 ) {\r
+        double d = 0.0;\r
+        while ( n1 != n2 ) {\r
+            if ( n1.getDistanceToParent() > 0.0 ) {\r
+                d += n1.getDistanceToParent();\r
+            }\r
+            n1 = n1.getParent();\r
+        }\r
+        return d;\r
+    }\r
+\r
+    private static boolean match( final String s,\r
+                                  final String query,\r
+                                  final boolean case_sensitive,\r
+                                  final boolean partial,\r
+                                  final boolean regex ) {\r
+        if ( ForesterUtil.isEmpty( s ) || ForesterUtil.isEmpty( query ) ) {\r
+            return false;\r
+        }\r
+        String my_s = s.trim();\r
+        String my_query = query.trim();\r
+        if ( !case_sensitive && !regex ) {\r
+            my_s = my_s.toLowerCase();\r
+            my_query = my_query.toLowerCase();\r
+        }\r
+        if ( regex ) {\r
+            Pattern p = null;\r
+            try {\r
+                if ( case_sensitive ) {\r
+                    p = Pattern.compile( my_query );\r
+                }\r
+                else {\r
+                    p = Pattern.compile( my_query, Pattern.CASE_INSENSITIVE );\r
+                }\r
+            }\r
+            catch ( final PatternSyntaxException e ) {\r
+                return false;\r
+            }\r
+            if ( p != null ) {\r
+                return p.matcher( my_s ).find();\r
+            }\r
+            else {\r
+                return false;\r
+            }\r
+        }\r
+        else if ( partial ) {\r
+            return my_s.indexOf( my_query ) >= 0;\r
+        }\r
+        else {\r
+            Pattern p = null;\r
+            try {\r
+                p = Pattern.compile( "(\\b|_)" + Pattern.quote( my_query ) + "(\\b|_)" );\r
+            }\r
+            catch ( final PatternSyntaxException e ) {\r
+                return false;\r
+            }\r
+            if ( p != null ) {\r
+                return p.matcher( my_s ).find();\r
+            }\r
+            else {\r
+                return false;\r
+            }\r
+        }\r
+    }\r
+\r
+    private final static PhylogenyNode moveTowardsRoot( final PhylogenyNode node, final double min_distance_to_root ) {\r
+        PhylogenyNode n = node;\r
+        PhylogenyNode prev = node;\r
+        while ( min_distance_to_root < n.calculateDistanceToRoot() ) {\r
+            prev = n;\r
+            n = n.getParent();\r
+        }\r
+        return prev;\r
+    }\r
+\r
+    public static enum DESCENDANT_SORT_PRIORITY {\r
+        NODE_NAME, SEQUENCE, TAXONOMY;\r
+    }\r
+\r
+    public static enum PhylogenyNodeField {\r
+        CLADE_NAME,\r
+        SEQUENCE_NAME,\r
+        SEQUENCE_SYMBOL,\r
+        TAXONOMY_CODE,\r
+        TAXONOMY_COMMON_NAME,\r
+        TAXONOMY_ID,\r
+        TAXONOMY_ID_UNIPROT_1,\r
+        TAXONOMY_ID_UNIPROT_2,\r
+        TAXONOMY_SCIENTIFIC_NAME;\r
+    }\r
+\r
+    public static void addMolecularSeqsToTree( final Phylogeny phy, final Msa msa ) {\r
+        for( int s = 0; s < msa.getNumberOfSequences(); ++s ) {\r
+            final org.forester.sequence.MolecularSequence seq = msa.getSequence( s );\r
+            final PhylogenyNode node = phy.getNode( seq.getIdentifier() );\r
+            final org.forester.phylogeny.data.Sequence new_seq = new Sequence();\r
+            new_seq.setMolecularSequenceAligned( true );\r
+            new_seq.setMolecularSequence( seq.getMolecularSequenceAsString() );\r
+            new_seq.setName( seq.getIdentifier() );\r
+            try {\r
+                new_seq.setType( PhyloXmlUtil.SEQ_TYPE_PROTEIN );\r
+            }\r
+            catch ( final PhyloXmlDataFormatException ignore ) {\r
+                // do nothing\r
+            }\r
+            node.getNodeData().addSequence( new_seq );\r
+        }\r
+    }\r
+\r
+    final private static class PhylogenyNodeSortTaxonomyPriority implements Comparator<PhylogenyNode> {\r
+\r
+        @Override\r
+        public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {\r
+            if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getTaxonomyCode()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );\r
+                }\r
+            }\r
+            if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getGeneName()\r
+                            .compareTo( n2.getNodeData().getSequence().getGeneName() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getSymbol()\r
+                            .compareTo( n2.getNodeData().getSequence().getSymbol() );\r
+                }\r
+            }\r
+            if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {\r
+                return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );\r
+            }\r
+            return 0;\r
+        }\r
+    }\r
+\r
+    final private static class PhylogenyNodeSortSequencePriority implements Comparator<PhylogenyNode> {\r
+\r
+        @Override\r
+        public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {\r
+            if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getGeneName()\r
+                            .compareTo( n2.getNodeData().getSequence().getGeneName() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getSymbol()\r
+                            .compareTo( n2.getNodeData().getSequence().getSymbol() );\r
+                }\r
+            }\r
+            if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getTaxonomyCode()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );\r
+                }\r
+            }\r
+            if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {\r
+                return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );\r
+            }\r
+            return 0;\r
+        }\r
+    }\r
+\r
+    final private static class PhylogenyNodeSortNodeNamePriority implements Comparator<PhylogenyNode> {\r
+\r
+        @Override\r
+        public int compare( final PhylogenyNode n1, final PhylogenyNode n2 ) {\r
+            if ( ( !ForesterUtil.isEmpty( n1.getName() ) ) && ( !ForesterUtil.isEmpty( n2.getName() ) ) ) {\r
+                return n1.getName().toLowerCase().compareTo( n2.getName().toLowerCase() );\r
+            }\r
+            if ( n1.getNodeData().isHasTaxonomy() && n2.getNodeData().isHasTaxonomy() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getScientificName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getScientificName() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getScientificName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getScientificName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getTaxonomy().getTaxonomyCode() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getTaxonomy().getTaxonomyCode() ) ) ) {\r
+                    return n1.getNodeData().getTaxonomy().getTaxonomyCode()\r
+                            .compareTo( n2.getNodeData().getTaxonomy().getTaxonomyCode() );\r
+                }\r
+            }\r
+            if ( n1.getNodeData().isHasSequence() && n2.getNodeData().isHasSequence() ) {\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getName().toLowerCase()\r
+                            .compareTo( n2.getNodeData().getSequence().getName().toLowerCase() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getGeneName() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getGeneName() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getGeneName()\r
+                            .compareTo( n2.getNodeData().getSequence().getGeneName() );\r
+                }\r
+                if ( ( !ForesterUtil.isEmpty( n1.getNodeData().getSequence().getSymbol() ) )\r
+                        && ( !ForesterUtil.isEmpty( n2.getNodeData().getSequence().getSymbol() ) ) ) {\r
+                    return n1.getNodeData().getSequence().getSymbol()\r
+                            .compareTo( n2.getNodeData().getSequence().getSymbol() );\r
+                }\r
+            }\r
+            return 0;\r
+        }\r
+    }\r
+}\r