import jalview.datamodel.BinarySequence;
import jalview.datamodel.BinarySequence.InvalidSequenceTypeException;
import jalview.math.Matrix;
+import jalview.math.MatrixI;
+import jalview.math.SparseMatrix;
import jalview.schemes.ResidueProperties;
import jalview.schemes.ScoreMatrix;
/**
* Performs Principal Component Analysis on given sequences
- *
- * @author $author$
- * @version $Revision$
*/
public class PCA implements Runnable
{
- Matrix m;
+ boolean jvCalcMode = true;
+
+ MatrixI m;
- Matrix symm;
+ MatrixI symm;
- Matrix m2;
+ MatrixI m2;
double[] eigenvalue;
- Matrix eigenvector;
+ MatrixI eigenvector;
- StringBuffer details = new StringBuffer();
+ StringBuilder details = new StringBuilder(1024);
/**
* Creates a new PCA object. By default, uses blosum62 matrix to generate
}
BinarySequence[] bs2 = new BinarySequence[s.length];
- ii = 0;
ScoreMatrix smtrx = null;
String sm = s_m;
if (sm != null)
}
details.append("PCA calculation using " + sm
+ " sequence similarity matrix\n========\n\n");
+ ii = 0;
while ((ii < s.length) && (s[ii] != null))
{
bs2[ii] = new BinarySequence(s[ii], nucleotides);
ii++;
}
- // System.out.println("Created binary encoding");
- // printMemory(rt);
int count = 0;
-
while ((count < bs.length) && (bs[count] != null))
{
count++;
}
- double[][] seqmat = new double[count][bs[0].getDBinary().length];
- double[][] seqmat2 = new double[count][bs2[0].getDBinary().length];
- int i = 0;
+ double[][] seqmat = new double[count][];
+ double[][] seqmat2 = new double[count][];
+ int i = 0;
while (i < count)
{
seqmat[i] = bs[i].getDBinary();
i++;
}
- // System.out.println("Created array");
- // printMemory(rt);
- // System.out.println(" --- Original matrix ---- ");
- m = new Matrix(seqmat, count, bs[0].getDBinary().length);
- m2 = new Matrix(seqmat2, count, bs2[0].getDBinary().length);
+ /*
+ * using a SparseMatrix to hold the encoded sequences matrix
+ * greatly speeds up matrix multiplication as these are mostly zero
+ */
+ m = new SparseMatrix(seqmat);
+ m2 = new Matrix(seqmat2);
}
* @return java.math.Matrix object
*/
- public Matrix getM()
+ public MatrixI getM()
{
return m;
}
*/
public double getEigenvalue(int i)
{
- return eigenvector.d[i];
+ return eigenvector.getD()[i];
}
/**
*/
public float[][] getComponents(int l, int n, int mm, float factor)
{
- float[][] out = new float[m.rows][3];
+ float[][] out = new float[m.height()][3];
- for (int i = 0; i < m.rows; i++)
+ for (int i = 0; i < m.height(); i++)
{
out[i][0] = (float) component(i, l) * factor;
out[i][1] = (float) component(i, n) * factor;
public double[] component(int n)
{
// n = index of eigenvector
- double[] out = new double[m.rows];
+ double[] out = new double[m.height()];
- for (int i = 0; i < m.rows; i++)
+ for (int i = 0; i < m.height(); i++)
{
out[i] = component(i, n);
}
{
double out = 0.0;
- for (int i = 0; i < symm.cols; i++)
+ for (int i = 0; i < symm.width(); i++)
{
- out += (symm.value[row][i] * eigenvector.value[i][n]);
+ out += (symm.getValue(row, i) * eigenvector.getValue(i, n));
}
- return out / eigenvector.d[n];
+ return out / eigenvector.getD()[n];
}
public String getDetails()
/**
* DOCUMENT ME!
*/
+ @Override
public void run()
{
PrintStream ps = new PrintStream(System.out)
{
+ @Override
public void print(String x)
{
details.append(x);
}
+ @Override
public void println()
{
details.append("\n");
}
};
+ // long now = System.currentTimeMillis();
try
{
details.append("PCA Calculation Mode is "
+ (jvCalcMode ? "Jalview variant" : "Original SeqSpace")
+ "\n");
- Matrix mt = m.transpose();
+ MatrixI mt = m.transpose();
details.append(" --- OrigT * Orig ---- \n");
- if (!jvCalcMode)
- {
- eigenvector = mt.preMultiply(m); // standard seqspace comparison matrix
- }
- else
- {
- eigenvector = mt.preMultiply(m2); // jalview variation on seqsmace
- // method
- }
- eigenvector.print(ps);
+ eigenvector = mt.preMultiply(jvCalcMode ? m2 : m);
+
+ eigenvector.print(ps, "%8.2f");
symm = eigenvector.copy();
details.append(" ---Tridiag transform matrix ---\n");
details.append(" --- D vector ---\n");
- eigenvector.printD(ps);
+ eigenvector.printD(ps, "%15.4e");
ps.println();
details.append("--- E vector ---\n");
- eigenvector.printE(ps);
+ eigenvector.printE(ps, "%15.4e");
ps.println();
// Now produce the diagonalization matrix
}
details.append(" --- New diagonalization matrix ---\n");
- eigenvector.print(ps);
+ eigenvector.print(ps, "%8.2f");
details.append(" --- Eigenvalues ---\n");
- eigenvector.printD(ps);
+ eigenvector.printD(ps, "%15.4e");
ps.println();
/*
* for (int seq=0;seq<symm.rows;seq++) { ps.print("\"Seq"+seq+"\""); for
*
* ps.print(","+component(seq, ev)); } ps.println(); }
*/
+ // System.out.println(("PCA.run() took "
+ // + (System.currentTimeMillis() - now) + "ms"));
}
- boolean jvCalcMode = true;
-
public void setJvCalcMode(boolean calcMode)
{
this.jvCalcMode = calcMode;
public void run()
{
-
pca = new PCA(seqstrings.getSequenceStrings(' '), nucleotide,
score_matrix);
pca.setJvCalcMode(jvCalcMode);
ii++;
}
- double[][] comps = new double[ii][ii];
+ // comps is not used - commenting out
+ // double[][] comps = new double[ii][];
+ //
+ // for (int i = 0; i < ii; i++)
+ // {
+ // if (pca.getEigenvalue(i) > 1e-4)
+ // {
+ // comps[i] = pca.component(i);
+ // }
+ // }
- for (int i = 0; i < ii; i++)
- {
- if (pca.getEigenvalue(i) > 1e-4)
- {
- comps[i] = pca.component(i);
- }
- }
-
- top = pca.getM().rows - 1;
+ top = pca.getM().height() - 1;
points = new Vector<SequencePoint>();
float[][] scores = pca.getComponents(top - 1, top - 2, top - 3, 100);
- for (int i = 0; i < pca.getM().rows; i++)
+ for (int i = 0; i < pca.getM().height(); i++)
{
SequencePoint sp = new SequencePoint(seqs[i], scores[i]);
points.addElement(sp);
}
-
}
public void updateRc(RotatableCanvasI rc)
{
- rc.setPoints(points, pca.getM().rows);
+ rc.setPoints(points, pca.getM().height());
}
public boolean isNucleotide()
// note: actual indices for components are dim1-1, etc (patch for JAL-1123)
float[][] scores = pca.getComponents(dim1 - 1, dim2 - 1, dim3 - 1, 100);
- for (int i = 0; i < pca.getM().rows; i++)
+ for (int i = 0; i < pca.getM().height(); i++)
{
- ((SequencePoint) points.elementAt(i)).coord = scores[i];
+ points.elementAt(i).coord = scores[i];
}
}