--- /dev/null
+<html>
+<head>
+<title>Substitution matrices in Jalview</title>
+</head>
+<body>
+<strong>Substitution Matrices available in Jalview</strong>
+<p>Jalview includes a small number of built in substitution matrices, used for different types of analysis.</p>
+<ul>
+<li><a href="#blosum62">BLOSUM62</a> is the standard protein sequence alignment and analysis matrix.</li>
+<li><a href="#pam250">PAM250</a> is another standard protein matrix, but not currently available for use from Jalview's user interface.</li>
+<li><a href="#simplenucleotide">Simple Nucleotide Substition</a> is a (fairly) arbitrary DNA/RNA substitution matrix.
+</li>
+</ul>
+
+<p><strong><a name="blosum62"></a>BLOSUM62</strong><br/>
+<table border="1">
+<tr><td></td><td> A </td><td> B </td><td> C </td><td> D </td><td> E </td><td> F </td><td> G </td><td> H </td><td> I </td><td> K </td><td> L </td><td> M </td><td> N </td><td> P </td><td> Q </td><td> R </td><td> S </td><td> T </td><td> U </td><td> V </td><td> W </td><td> X </td><td> Y </td><td> Z </td></tr>
+<tr><td>A</td><td>4</td><td>-2</td><td>0</td><td>-2</td><td>-1</td><td>-2</td><td>0</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>-3</td><td>0</td><td>-2</td><td>-1</td></tr>
+<tr><td>B</td><td>-2</td><td>4</td><td>-3</td><td>4</td><td>1</td><td>-3</td><td>-1</td><td>0</td><td>-3</td><td>0</td><td>-4</td><td>-3</td><td>3</td><td>-2</td><td>0</td><td>-1</td><td>0</td><td>-1</td><td>-1</td><td>-3</td><td>-4</td><td>-1</td><td>-3</td><td>1</td></tr>
+<tr><td>C</td><td>0</td><td>-3</td><td>9</td><td>-3</td><td>-4</td><td>-2</td><td>-3</td><td>-3</td><td>-1</td><td>-3</td><td>-1</td><td>-1</td><td>-3</td><td>-3</td><td>-3</td><td>3</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-2</td><td>-2</td><td>-2</td><td>-3</td></tr>
+<tr><td>D</td><td>-2</td><td>4</td><td>-3</td><td>6</td><td>2</td><td>-3</td><td>-1</td><td>-1</td><td>-3</td><td>-1</td><td>-4</td><td>-3</td><td>1</td><td>-1</td><td>0</td><td>-2</td><td>0</td><td>-1</td><td>-1</td><td>-3</td><td>-4</td><td>-1</td><td>-3</td><td>1</td></tr>
+<tr><td>E</td><td>-1</td><td>1</td><td>-4</td><td>2</td><td>5</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>1</td><td>-3</td><td>-2</td><td>0</td><td>-1</td><td>2</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-2</td><td>4</td></tr>
+<tr><td>F</td><td>-2</td><td>-3</td><td>-2</td><td>-3</td><td>-3</td><td>6</td><td>-3</td><td>-1</td><td>0</td><td>-3</td><td>0</td><td>0</td><td>-3</td><td>-4</td><td>-3</td><td>-3</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>1</td><td>-1</td><td>3</td><td>-3</td></tr>
+<tr><td>G</td><td>0</td><td>-1</td><td>-3</td><td>-1</td><td>-2</td><td>-3</td><td>6</td><td>-2</td><td>-4</td><td>-2</td><td>-4</td><td>-3</td><td>0</td><td>-2</td><td>-2</td><td>-2</td><td>0</td><td>-2</td><td>-1</td><td>-3</td><td>-2</td><td>-1</td><td>-3</td><td>-2</td></tr>
+<tr><td>H</td><td>-2</td><td>0</td><td>-3</td><td>-1</td><td>0</td><td>-1</td><td>-2</td><td>8</td><td>-3</td><td>-1</td><td>-3</td><td>-2</td><td>1</td><td>-2</td><td>0</td><td>0</td><td>-1</td><td>-2</td><td>-1</td><td>-3</td><td>-2</td><td>-1</td><td>2</td><td>0</td></tr>
+<tr><td>I</td><td>-1</td><td>-3</td><td>-1</td><td>-3</td><td>-3</td><td>0</td><td>-4</td><td>-3</td><td>4</td><td>-3</td><td>2</td><td>1</td><td>-3</td><td>-3</td><td>-3</td><td>-3</td><td>-2</td><td>-1</td><td>-1</td><td>3</td><td>-3</td><td>-1</td><td>-1</td><td>-3</td></tr>
+<tr><td>K</td><td>-1</td><td>0</td><td>-3</td><td>-1</td><td>1</td><td>-3</td><td>-2</td><td>-1</td><td>-3</td><td>5</td><td>-2</td><td>-1</td><td>0</td><td>-1</td><td>1</td><td>2</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-2</td><td>1</td></tr>
+<tr><td>L</td><td>-1</td><td>-4</td><td>-1</td><td>-4</td><td>-3</td><td>0</td><td>-4</td><td>-3</td><td>2</td><td>-2</td><td>4</td><td>2</td><td>-3</td><td>-3</td><td>-2</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>1</td><td>-2</td><td>-1</td><td>-1</td><td>-3</td></tr>
+<tr><td>M</td><td>-1</td><td>-3</td><td>-1</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>-2</td><td>1</td><td>-1</td><td>2</td><td>5</td><td>-2</td><td>-2</td><td>0</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td></tr>
+<tr><td>N</td><td>-2</td><td>3</td><td>-3</td><td>1</td><td>0</td><td>-3</td><td>0</td><td>1</td><td>-3</td><td>0</td><td>-3</td><td>-2</td><td>6</td><td>-2</td><td>0</td><td>0</td><td>1</td><td>0</td><td>-1</td><td>-3</td><td>-4</td><td>-1</td><td>-2</td><td>0</td></tr>
+<tr><td>P</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-1</td><td>-4</td><td>-2</td><td>-2</td><td>-3</td><td>-1</td><td>-3</td><td>-2</td><td>-2</td><td>7</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-2</td><td>-2</td><td>-4</td><td>-2</td><td>-3</td><td>-1</td></tr>
+<tr><td>Q</td><td>-1</td><td>0</td><td>-3</td><td>0</td><td>2</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>1</td><td>-2</td><td>0</td><td>0</td><td>-1</td><td>5</td><td>1</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>3</td></tr>
+<tr><td>R</td><td>-1</td><td>-1</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>2</td><td>-2</td><td>-1</td><td>0</td><td>-2</td><td>1</td><td>5</td><td>-1</td><td>-1</td><td>-1</td><td>-3</td><td>-3</td><td>-1</td><td>-2</td><td>0</td></tr>
+<tr><td>S</td><td>1</td><td>0</td><td>-1</td><td>0</td><td>0</td><td>-2</td><td>0</td><td>-1</td><td>-2</td><td>0</td><td>-2</td><td>-1</td><td>1</td><td>-1</td><td>0</td><td>-1</td><td>4</td><td>1</td><td>0</td><td>-2</td><td>-3</td><td>0</td><td>-2</td><td>0</td></tr>
+<tr><td>T</td><td>0</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>0</td><td>-1</td><td>-1</td><td>-1</td><td>1</td><td>5</td><td>0</td><td>0</td><td>-2</td><td>0</td><td>-2</td><td>-1</td></tr>
+<tr><td>U</td><td>0</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td></tr>
+<tr><td>V</td><td>0</td><td>-3</td><td>-1</td><td>-3</td><td>-2</td><td>-1</td><td>-3</td><td>-3</td><td>3</td><td>-2</td><td>1</td><td>1</td><td>-3</td><td>-2</td><td>-2</td><td>-3</td><td>-2</td><td>0</td><td>-1</td><td>4</td><td>-3</td><td>-1</td><td>-1</td><td>-2</td></tr>
+<tr><td>W</td><td>-3</td><td>-4</td><td>-2</td><td>-4</td><td>-3</td><td>1</td><td>-2</td><td>-2</td><td>-3</td><td>-3</td><td>-2</td><td>-1</td><td>-4</td><td>-4</td><td>-2</td><td>-3</td><td>-3</td><td>-2</td><td>-2</td><td>-3</td><td>11</td><td>-2</td><td>2</td><td>-3</td></tr>
+<tr><td>X</td><td>0</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td></tr>
+<tr><td>Y</td><td>-2</td><td>-3</td><td>-2</td><td>-3</td><td>-2</td><td>3</td><td>-3</td><td>2</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-2</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>2</td><td>-1</td><td>7</td><td>-2</td></tr>
+<tr><td>Z</td><td>-1</td><td>1</td><td>-3</td><td>1</td><td>4</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>1</td><td>-3</td><td>-1</td><td>0</td><td>-1</td><td>3</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-2</td><td>4</td></tr>
+</table>
+<p><strong><a name="pam250">PAM250</a></strong><br/>
+<table border="1">
+<tr><td></td><td> A </td><td> B </td><td> C </td><td> D </td><td> E </td><td> F </td><td> G </td><td> H </td><td> I </td><td> K </td><td> L </td><td> M </td><td> N </td><td> P </td><td> Q </td><td> R </td><td> S </td><td> T </td><td> U </td><td> V </td><td> W </td><td> X </td><td> Y </td><td> Z </td></tr>
+<tr><td>A</td><td>2</td><td>0</td><td>-2</td><td>0</td><td>0</td><td>-3</td><td>1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>0</td><td>1</td><td>0</td><td>-2</td><td>1</td><td>1</td><td>0</td><td>0</td><td>-6</td><td>0</td><td>-3</td><td>0</td></tr>
+<tr><td>B</td><td>0</td><td>3</td><td>-4</td><td>3</td><td>3</td><td>-4</td><td>0</td><td>1</td><td>-2</td><td>1</td><td>-3</td><td>-2</td><td>2</td><td>-1</td><td>1</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-2</td><td>-5</td><td>-1</td><td>-3</td><td>2</td></tr>
+<tr><td>C</td><td>-2</td><td>-4</td><td>12</td><td>-5</td><td>-5</td><td>-4</td><td>-3</td><td>-3</td><td>-2</td><td>-5</td><td>-6</td><td>-5</td><td>-4</td><td>-3</td><td>-5</td><td>-4</td><td>0</td><td>-2</td><td>-3</td><td>-2</td><td>-8</td><td>-3</td><td>0</td><td>-5</td></tr>
+<tr><td>D</td><td>0</td><td>3</td><td>-5</td><td>4</td><td>3</td><td>-6</td><td>1</td><td>1</td><td>-2</td><td>0</td><td>-4</td><td>-3</td><td>2</td><td>-1</td><td>2</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-2</td><td>-7</td><td>-1</td><td>-4</td><td>3</td></tr>
+<tr><td>E</td><td>0</td><td>3</td><td>-5</td><td>3</td><td>4</td><td>-5</td><td>0</td><td>1</td><td>-2</td><td>0</td><td>-3</td><td>-2</td><td>1</td><td>-1</td><td>2</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-2</td><td>-7</td><td>-1</td><td>-4</td><td>3</td></tr>
+<tr><td>F</td><td>-3</td><td>-4</td><td>-4</td><td>-6</td><td>-5</td><td>9</td><td>-5</td><td>-2</td><td>1</td><td>-5</td><td>2</td><td>0</td><td>-3</td><td>-5</td><td>-5</td><td>-4</td><td>-3</td><td>-3</td><td>-2</td><td>-1</td><td>0</td><td>-2</td><td>7</td><td>-5</td></tr>
+<tr><td>G</td><td>1</td><td>0</td><td>-3</td><td>1</td><td>0</td><td>-5</td><td>5</td><td>-2</td><td>-3</td><td>-2</td><td>-4</td><td>-3</td><td>0</td><td>0</td><td>-1</td><td>-3</td><td>1</td><td>0</td><td>-1</td><td>-1</td><td>-7</td><td>-1</td><td>-5</td><td>0</td></tr>
+<tr><td>H</td><td>-1</td><td>1</td><td>-3</td><td>1</td><td>1</td><td>-2</td><td>-2</td><td>6</td><td>-2</td><td>0</td><td>-2</td><td>-2</td><td>2</td><td>0</td><td>3</td><td>2</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>0</td><td>2</td></tr>
+<tr><td>I</td><td>-1</td><td>-2</td><td>-2</td><td>-2</td><td>-2</td><td>1</td><td>-3</td><td>-2</td><td>5</td><td>-2</td><td>2</td><td>2</td><td>-2</td><td>-2</td><td>-2</td><td>-2</td><td>-1</td><td>0</td><td>-1</td><td>4</td><td>-5</td><td>-1</td><td>-1</td><td>-2</td></tr>
+<tr><td>K</td><td>-1</td><td>1</td><td>-5</td><td>0</td><td>0</td><td>-5</td><td>-2</td><td>0</td><td>-2</td><td>5</td><td>-3</td><td>0</td><td>1</td><td>-1</td><td>1</td><td>3</td><td>0</td><td>0</td><td>-1</td><td>-2</td><td>-3</td><td>-1</td><td>-4</td><td>0</td></tr>
+<tr><td>L</td><td>-2</td><td>-3</td><td>-6</td><td>-4</td><td>-3</td><td>2</td><td>-4</td><td>-2</td><td>2</td><td>-3</td><td>6</td><td>4</td><td>-3</td><td>-3</td><td>-2</td><td>-3</td><td>-3</td><td>-2</td><td>-1</td><td>2</td><td>-2</td><td>-1</td><td>-1</td><td>-3</td></tr>
+<tr><td>M</td><td>-1</td><td>-2</td><td>-5</td><td>-3</td><td>-2</td><td>0</td><td>-3</td><td>-2</td><td>2</td><td>0</td><td>4</td><td>6</td><td>-2</td><td>-2</td><td>-1</td><td>0</td><td>-2</td><td>-1</td><td>-1</td><td>2</td><td>-4</td><td>-1</td><td>-2</td><td>-2</td></tr>
+<tr><td>N</td><td>0</td><td>2</td><td>-4</td><td>2</td><td>1</td><td>-3</td><td>0</td><td>2</td><td>-2</td><td>1</td><td>-3</td><td>-2</td><td>2</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>-2</td><td>-4</td><td>0</td><td>-2</td><td>1</td></tr>
+<tr><td>P</td><td>1</td><td>-1</td><td>-3</td><td>-1</td><td>-1</td><td>-5</td><td>0</td><td>0</td><td>-2</td><td>-1</td><td>-3</td><td>-2</td><td>0</td><td>6</td><td>0</td><td>0</td><td>1</td><td>0</td><td>-1</td><td>-1</td><td>-6</td><td>-1</td><td>-5</td><td>0</td></tr>
+<tr><td>Q</td><td>0</td><td>1</td><td>-5</td><td>2</td><td>2</td><td>-5</td><td>-1</td><td>3</td><td>-2</td><td>1</td><td>-2</td><td>-1</td><td>1</td><td>0</td><td>4</td><td>1</td><td>-1</td><td>-1</td><td>-1</td><td>-2</td><td>-5</td><td>-1</td><td>-4</td><td>3</td></tr>
+<tr><td>R</td><td>-2</td><td>-1</td><td>-4</td><td>-1</td><td>-1</td><td>-4</td><td>-3</td><td>2</td><td>-2</td><td>3</td><td>-3</td><td>0</td><td>0</td><td>0</td><td>1</td><td>6</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>2</td><td>-1</td><td>-4</td><td>0</td></tr>
+<tr><td>S</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-3</td><td>1</td><td>-1</td><td>-1</td><td>0</td><td>-3</td><td>-2</td><td>1</td><td>1</td><td>-1</td><td>0</td><td>2</td><td>1</td><td>0</td><td>-1</td><td>-2</td><td>0</td><td>-3</td><td>0</td></tr>
+<tr><td>T</td><td>1</td><td>0</td><td>-2</td><td>0</td><td>0</td><td>-3</td><td>0</td><td>-1</td><td>0</td><td>0</td><td>-2</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>1</td><td>3</td><td>0</td><td>0</td><td>-5</td><td>0</td><td>-3</td><td>-1</td></tr>
+<tr><td>U</td><td>0</td><td>-1</td><td>-3</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>0</td><td>-1</td><td>-1</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-4</td><td>-1</td><td>-2</td><td>-1</td></tr>
+<tr><td>V</td><td>0</td><td>-2</td><td>-2</td><td>-2</td><td>-2</td><td>-1</td><td>-1</td><td>-2</td><td>4</td><td>-2</td><td>2</td><td>2</td><td>-2</td><td>-1</td><td>-2</td><td>-2</td><td>-1</td><td>0</td><td>-1</td><td>4</td><td>-6</td><td>-1</td><td>-2</td><td>-2</td></tr>
+<tr><td>W</td><td>-6</td><td>-5</td><td>-8</td><td>-7</td><td>-7</td><td>0</td><td>-7</td><td>-3</td><td>-5</td><td>-3</td><td>-2</td><td>-4</td><td>-4</td><td>-6</td><td>-5</td><td>2</td><td>-2</td><td>-5</td><td>-4</td><td>-6</td><td>17</td><td>-4</td><td>0</td><td>-6</td></tr>
+<tr><td>X</td><td>0</td><td>-1</td><td>-3</td><td>-1</td><td>-1</td><td>-2</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>0</td><td>-1</td><td>-1</td><td>-1</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-4</td><td>-1</td><td>-2</td><td>-1</td></tr>
+<tr><td>Y</td><td>-3</td><td>-3</td><td>0</td><td>-4</td><td>-4</td><td>7</td><td>-5</td><td>0</td><td>-1</td><td>-4</td><td>-1</td><td>-2</td><td>-2</td><td>-5</td><td>-4</td><td>-4</td><td>-3</td><td>-3</td><td>-2</td><td>-2</td><td>0</td><td>-2</td><td>10</td><td>-4</td></tr>
+<tr><td>Z</td><td>0</td><td>2</td><td>-5</td><td>3</td><td>3</td><td>-5</td><td>0</td><td>2</td><td>-2</td><td>0</td><td>-3</td><td>-2</td><td>1</td><td>0</td><td>3</td><td>0</td><td>0</td><td>-1</td><td>-1</td><td>-2</td><td>-6</td><td>-1</td><td>-4</td><td>3</td></tr>
+</table>
+
+<p><strong><a name="simplenucleotide">Simple Nucleotide Substitution</a></strong></br>
+This is an ad-hoc matrix which, in addition to penalising mutations between the common nucleotides (ACGT), includes T/U equivalence in order to allow both DNA and/or RNA.
+In addition, it encodes weak equivalence between R and Y with AG and CTU, respectively, and N is allowed to match any other base weakly. This matrix also includes I (Inosine) and X (Xanthine), but encodes them to weakly match any of (ACGTU), and unfavourably match each other.
+<table border="1">
+<tr><td></td><td> A </td><td> C </td><td> G </td><td> I </td><td> N </td><td> R </td><td> T </td><td> U </td><td> X </td><td> Y </td></tr>
+<tr><td>A</td><td>10</td><td>-8</td><td>-8</td><td>1</td><td>1</td><td>1</td><td>-8</td><td>-8</td><td>1</td><td>-8</td></tr>
+<tr><td>C</td><td>-8</td><td>10</td><td>-8</td><td>1</td><td>1</td><td>-8</td><td>-8</td><td>-8</td><td>1</td><td>1</td></tr>
+<tr><td>G</td><td>-8</td><td>-8</td><td>10</td><td>1</td><td>1</td><td>1</td><td>-8</td><td>-8</td><td>1</td><td>-8</td></tr>
+<tr><td>I</td><td>1</td><td>1</td><td>1</td><td>10</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td></tr>
+<tr><td>N</td><td>1</td><td>1</td><td>1</td><td>1</td><td>10</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></tr>
+<tr><td>R</td><td>1</td><td>-8</td><td>1</td><td>0</td><td>1</td><td>10</td><td>-8</td><td>-8</td><td>0</td><td>-8</td></tr>
+<tr><td>T</td><td>-8</td><td>-8</td><td>-8</td><td>1</td><td>1</td><td>-8</td><td>10</td><td>10</td><td>1</td><td>1</td></tr>
+<tr><td>U</td><td>-8</td><td>-8</td><td>-8</td><td>1</td><td>1</td><td>-8</td><td>10</td><td>10</td><td>1</td><td>1</td></tr>
+<tr><td>X</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>10</td><td>0</td></tr>
+<tr><td>Y</td><td>-8</td><td>1</td><td>-8</td><td>0</td><td>1</td><td>-8</td><td>1</td><td>1</td><td>0</td><td>10</td></tr>
+</table>
+<strong><em>This nucleotide matrix was introduced in
+ Jalview 2.8. If you'd like to improve it - please take a look at <a
+ href="http://issues.jalview.org/browse/JAL-1027">Issue JAL-1027
+ - introduce a nucleotide substitution matrix that supports RNA/DNA
+ and ambiguity codes</a>
+ </em></strong>
+ </body>
+</html>
\ No newline at end of file
//
static final int[][] DNA =
{
- { 10, -8, -8, -8, -8, 1, 1, -8, 1, 1, 1 }, // C
- { -8, 10, -8, -8, 10, 1, 1, -8, 1, 1, 1 }, // T
- { -8, -8, 10, -8, -8, 1, 1, 1, -8, 1, 1 }, // A
- { -8, -8, -8, 10, -8, 1, 1, 1, -8, 1, 1 }, // G
- { -8, 10, -8, -8, 10, 1, 1, -8, 1, 1, 1 }, // U
+ { 10, -8, -8, -8, -8, 1, 1, 1, -8, 1, 1 }, // A
+ { -8, 10, -8, -8, -8, 1, 1, -8, 1, 1, 1 }, // C
+ { -8, -8, 10, -8, -8, 1, 1, 1, -8, 1, 1 }, // G
+ { -8, -8, -8, 10, 10, 1, 1, -8, 1, 1, 1 }, // T
+ { -8, -8, -8, 10, 10, 1, 1, -8, 1, 1, 1 }, // U
{ 1, 1, 1, 1, 1, 10, 0, 0, 0, 1, 1 }, // I
{ 1, 1, 1, 1, 1, 0, 10, 0, 0, 1, 1 }, // X
- { -8, -8, 1, 1, -8, 0, 0, 10, 0, 1, 1 }, // R
- { 1, 1, -8, -8, 1, 0, 0, 0, 10, 1, 1 }, // Y
+ { 1, -8, 1, -8, -8, 0, 0, 10, -8, 1, 1 }, // R
+ { -8, 1, -8, 1, 1, 0, 0, -8, 10, 1, 1 }, // Y
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1 }, // N
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, // -
};