JAL-1925 update source version in license
[jalview.git] / help / html / webServices / proteinDisorder.html
index 1f53a87..53c0822 100644 (file)
@@ -1,7 +1,7 @@
 <html>
 <!--
- * Jalview - A Sequence Alignment Editor and Viewer ($$Version-Rel$$)
- * Copyright (C) $$Year-Rel$$ The Jalview Authors
+ * Jalview - A Sequence Alignment Editor and Viewer (Version 2.9.0b2)
+ * Copyright (C) 2015 The Jalview Authors
  * 
  * This file is part of Jalview.
  * 
 <title>JABAWS Protein Disorder Prediction Services</title>
 </head>
 <body>
-       <p>
-               <strong>JABAWS Protein Disorder Prediction Services</strong> <br />
-               The <strong>Web Services&rarr;Disorder</strong> menu in the alignment
-               window allows access to protein disorder prediction services provided
-               by the configured <a href="http://www.compbio.dundee.ac.uk/jabaws">JABAWS
-                       servers</a>. Each service operates on sequences in the alignment or
-               currently selected region (<em>since Jalview 2.8.0b1</em>) to identify
-               regions likely to be unstructured or flexible, or alternately, fold to
-               form globular domains.
-       </p>
-       <p>
-               Predictor results include both <a href="../features/seqfeatures.html">sequence
-                       features</a> and sequence associated <a
-                       href="../features/annotation.html">alignment annotation</a> rows.
-               Features display is controlled from the <a
-                       href="../features/featureSettings.html">Feature Settings</a> dialog
-               box. Clicking on the ID for a disorder prediction annotation row will
-               highlight or select (if double clicked) the associated sequence for
-               that row. You can also use the <em>Sequence Associated</em> option in
-               the <a href="../colourSchemes/annotationColouring.html">Colour By
-                       Annotation</a> dialog box to colour sequences according to the results of
-               predictors shown as annotation rows.
-       </p>
-       <p>JABAWS 2.0 provides four disorder predictors which are described
-               below:</p>
-       <ul>
-               <li><a href="#disembl">DisEMBL</a></li>
-               <li><a href="#iupred">IUPred</a></li>
-               <li><a href="#ronn">RONN</a></li>
-               <li><a href="#globplot">GlobPlot</a></li>
-       </ul>
-       <p>
-               <strong><a name="disembl"></a><a href="http://dis.embl.de/">DisEMBL
-                               (Linding et al., 2003)</a> </strong> <br /> DisEMBL is a set of machine-learning
-               based predictors trained to recognise disorder-related annotation
-               found on PDB structures.
-       </p>
-       <table border="1">
-               <tr>
-                       <td><strong>Name</strong></td>
-                       <td><strong>Annotation type</strong></td>
-                       <td><strong>Description</strong></td>
-               </tr>
-               <tr>
-                       <td><strong>COILS</strong></td>
-                       <td>Sequence Feature &amp;<br />Annotation Row
-                       </td>
-                       <td>Predicts loops/coils according to DSSP definition<a
-                               href="#dsspstates">[1]</a>.<br />Features mark range(s) of residues
-                               predicted as loops/coils, and annotation row gives raw value for
-                               each residue. Value over 0.516 indicates loop/coil.
-                       </td>
-               </tr>
-               <tr>
-                       <td><strong>HOTLOOPS</strong></td>
-                       <td>Sequence Feature &amp;<br />Annotation Row
-                       </td>
-                       <td>&quot;Hot loops constitute a refined subset of <strong>COILS</strong>,
-                               namely those loops with a high degree of mobility as determined from
-                               C&alpha; temperature factors (B factors). It follows that highly
-                               dynamic loops should be considered protein disorder.&quot;<br />
-                               Features mark range(s) of residues predicted to be hot loops and
-                               annotation row gives raw value for each residue. Values over 0.6
-                               indicates hot loop.
-                       </td>
-               </tr>
-               <tr>
-                       <td><strong>REMARK465</strong></td>
-                       <td>Sequence Feature &amp;<br />Annotation Row
-                       </td>
-                       <td>&quot;Missing coordinates in X-ray structure as defined by
-                               remark465 entries in PDB. Nonassigned electron densities most often
-                               reflect intrinsic disorder, and have been used early on in disorder
-                               prediction.&quot;<br /> Features gives range(s) of residues
-                               predicted as disordered, and annotation row gives raw value for each
-                               residue. Value over 0.1204 indicates disorder.
-                       </td>
-               </tr>
-       </table>
+  <p>
+    <strong>JABAWS Protein Disorder Prediction Services</strong> <br />
+    The <strong>Web Services&rarr;Disorder</strong> menu in the
+    alignment window allows access to protein disorder prediction
+    services provided by the configured <a
+      href="http://www.compbio.dundee.ac.uk/jabaws"
+    >JABAWS servers</a>. Each service operates on sequences in the
+    alignment or currently selected region (<em>since Jalview
+      2.8.0b1</em>) to identify regions likely to be unstructured or
+    flexible, or alternately, fold to form globular domains.
+  </p>
+  <p>
+    Predictor results include both <a
+      href="../features/seqfeatures.html"
+    >sequence features</a> and sequence associated <a
+      href="../features/annotation.html"
+    >alignment annotation</a> rows. Features display is controlled from
+    the <a href="../features/featureSettings.html">Feature Settings</a>
+    dialog box. Clicking on the ID for a disorder prediction annotation
+    row will highlight or select (if double clicked) the associated
+    sequence for that row. You can also use the <em>Sequence
+      Associated</em> option in the <a
+      href="../colourSchemes/annotationColouring.html"
+    >Colour By Annotation</a> dialog box to colour sequences according to
+    the results of predictors shown as annotation rows.
+  </p>
+  <p>JABAWS 2.0 provides four disorder predictors which are
+    described below:</p>
+  <ul>
+    <li><a href="#disembl">DisEMBL</a></li>
+    <li><a href="#iupred">IUPred</a></li>
+    <li><a href="#ronn">RONN</a></li>
+    <li><a href="#globplot">GlobPlot</a></li>
+  </ul>
+  <p>
+    <strong><a name="disembl"></a><a href="http://dis.embl.de/">DisEMBL
+        (Linding et al., 2003)</a> </strong> <br /> DisEMBL is a set of
+    machine-learning based predictors trained to recognise
+    disorder-related annotation found on PDB structures.
+  </p>
+  <table border="1">
+    <tr>
+      <td><strong>Name</strong></td>
+      <td><strong>Annotation type</strong></td>
+      <td><strong>Description</strong></td>
+    </tr>
+    <tr>
+      <td><strong>COILS</strong></td>
+      <td>Sequence Feature &amp;<br />Annotation Row
+      </td>
+      <td>Predicts loops/coils according to DSSP definition<a
+        href="#dsspstates"
+      >[1]</a>.<br />Features mark range(s) of residues predicted as
+        loops/coils, and annotation row gives raw value for each
+        residue. Value over 0.516 indicates loop/coil.
+      </td>
+    </tr>
+    <tr>
+      <td><strong>HOTLOOPS</strong></td>
+      <td>Sequence Feature &amp;<br />Annotation Row
+      </td>
+      <td>&quot;Hot loops constitute a refined subset of <strong>COILS</strong>,
+        namely those loops with a high degree of mobility as determined
+        from C&alpha; temperature factors (B factors). It follows that
+        highly dynamic loops should be considered protein
+        disorder.&quot;<br /> Features mark range(s) of residues
+        predicted to be hot loops and annotation row gives raw value for
+        each residue. Values over 0.6 indicates hot loop.
+      </td>
+    </tr>
+    <tr>
+      <td><strong>REMARK465</strong></td>
+      <td>Sequence Feature &amp;<br />Annotation Row
+      </td>
+      <td>&quot;Missing coordinates in X-ray structure as defined
+        by remark465 entries in PDB. Nonassigned electron densities most
+        often reflect intrinsic disorder, and have been used early on in
+        disorder prediction.&quot;<br /> Features gives range(s) of
+        residues predicted as disordered, and annotation row gives raw
+        value for each residue. Value over 0.1204 indicates disorder.
+      </td>
+    </tr>
+  </table>
 
-       <p>
-               <a name="dsspstates"></a>[1]. DSSP Classification: &alpha;-helix (H),
-               310-helix (G), &beta;-strand (E) are ordered, and all other states
-               (&beta;-bridge (B), &beta;-turn (T), bend (S), &pi;-helix (I), and
-               coil (C)) considered loops or coils.
-       </p>
+  <p>
+    <a name="dsspstates"></a>[1]. DSSP Classification: &alpha;-helix
+    (H), 310-helix (G), &beta;-strand (E) are ordered, and all other
+    states (&beta;-bridge (B), &beta;-turn (T), bend (S), &pi;-helix
+    (I), and coil (C)) considered loops or coils.
+  </p>
 
 
-       <p>
-               <strong><a name="ronn"></a><a
-                       href="http://www.strubi.ox.ac.uk/RONN">RONN</a></strong> <em>a.k.a.</em>
-               Regional Order Neural Network<br />This predictor employs an approach
-               known as the 'bio-basis' method to predict regions of disorder in
-               sequences based on their local similarity with a gold-standard set of
-               disordered protein sequences. It yields a set of disorder prediction
-               scores, which are shown as sequence annotation below the alignment.
-       </p>
-       <table border="1">
-               <tr>
-                       <td><strong>Name</strong></td>
-                       <td><strong>Annotation type</strong></td>
-                       <td><strong>Description</strong></td>
-               </tr>
-               <tr>
-                       <td><strong>JRonn</strong>[2]</td>
-                       <td>Annotation Row</td>
-                       <td>RONN score for each residue in the sequence. Scores above
-                               0.5 identify regions of the protein likely to be disordered.</td>
-               </tr>
-       </table>
-       <p>
-               <em>[2]. JRonn denotes the score for this server because JABAWS
-                       runs a Java port of RONN developed by Peter Troshin and distributed
-                       as part of <a href="http://www.biojava.org/">Biojava 3</a>
-               </em>
-       </p>
-       <p>
-               <strong><a name="iupred"></a><a
-                       href="http://iupred.enzim.hu/Help.php">IUPred</a></strong><br /> IUPred
-               employs an empirical model to estimate likely regions of disorder.
-               There are three different prediction types offered, each using
-               different parameters optimized for slightly different applications. It
-               provides raw scores based on two models for predicting regions of
-               'long disorder' and 'short disorder'. A third predictor identifies
-               regions likely to form structured domains.
-       </p>
-       <table border="1">
-               <tr>
-                       <td><strong>Name</strong></td>
-                       <td><strong>Annotation type</strong></td>
-                       <td><strong>Description</strong></td>
-               </tr>
-               <tr>
-                       <td><strong>Long disorder</strong></td>
-                       <td>Annotation Row</td>
-                       <td>Prediction of context-independent global disorder that
-                               encompasses at least 30 consecutive residues of predicted disorder.
-                               Employs a 100 residue window for calculation.<br />Values above 0.5
-                               indicates the residue is intrinsically disordered.
-                       </td>
-               </tr>
-               <tr>
-                       <td><strong>Short disorder</strong></td>
-                       <td>Annotation Row</td>
-                       <td>Predictor for short, (and probably) context-dependent,
-                               disordered regions, such as missing residues in the X-ray structure
-                               of an otherwise globular protein. Employs a 25 residue window for
-                               calculation, and includes adjustment parameter for chain termini
-                               which favors disorder prediction at the ends.<br />Values above 0.5
-                               indicate short-range disorder.
-                       </td>
-               </tr>
-               <tr>
-                       <td><strong>Structured domains</strong></td>
-                       <td>Sequence Feature</td>
-                       <td>Features highlighting likely globular domains useful for
-                               structure genomics investigation. <br />Post-analysis of disordered
-                               region profile to find continuous regions confidently predicted to
-                               be ordered. Neighbouring regions close to each other are merged,
-                               while regions shorter than the minimal domain size of at least 30
-                               residues are ignored.
-                       </td>
-               </tr>
-       </table>
-       <p>
-               <strong><a name="globplot"></a><a
-                       href="http://globplot.embl.de/">GLOBPLOT</a></strong><br /> Defines regions
-               of globularity or natively unstructured regions based on a running sum
-               of the propensity of residues to be structured or unstructured. The
-               propensity is calculated based on the probability of each amino acid
-               being observed within well defined regions of secondary structure or
-               within regions of random coil. The initial signal is smoothed with a
-               Savitzky-Golay filter, and its first order derivative computed.
-               Residues for which the first order derivative is positive are
-               designated as natively unstructured, whereas those with negative
-               values are structured.<br />
-       <table border="1">
-               <tr>
-                       <td><strong>Name</strong></td>
-                       <td><strong>Annotation type</strong></td>
-                       <td><strong>Description</strong></td>
-               </tr>
-               <tr>
-                       <td><strong>Disordered Region</strong></td>
-                       <td>Sequence Feature</td>
-                       <td><br />Sequence features marking range(s) of residues with
-                               positive dydx values (correspond to the #Disorder column from JABAWS
-                               results)</td>
-               </tr>
-               <tr>
-                       <td><strong>Globular Domain</strong>
-                       <td>Sequence Feature</td>
-                       <td>Putative globular domains</td>
-               </tr>
-               <tr>
-                       <td><strong>Dydx</strong></td>
-                       <td>Annotation row</td>
-                       <td>First order derivative of smoothed score. Values above 0
-                               indicates residue is disordered.</td>
-               </tr>
-               <tr>
-                       <td><strong>Smoothed Score<br />Raw Score
-                       </strong></td>
-                       <td>Annotation Row</td>
-                       <td>The smoothed and raw scores used to create the differential
-                               signal that indicates the presence of unstructured regions.<br /> <em>These
-                                       are hidden by default, but can be shown by right-clicking on the
-                                       alignment annotation panel and selecting <strong>Show
-                                               hidden annotation</strong>
-                       </em>
-                       </td>
-               </tr>
-       </table>
-       <p>
-               <em>Documentation and thresholds for the JABAWS Disorder
-                       predictors adapted from a personal communication by Nancy Giang,
-                       2012.</em>
-       </p>
+  <p>
+    <strong><a name="ronn"></a><a
+      href="http://www.strubi.ox.ac.uk/RONN"
+    >RONN</a></strong> <em>a.k.a.</em> Regional Order Neural Network<br />This
+    predictor employs an approach known as the 'bio-basis' method to
+    predict regions of disorder in sequences based on their local
+    similarity with a gold-standard set of disordered protein sequences.
+    It yields a set of disorder prediction scores, which are shown as
+    sequence annotation below the alignment.
+  </p>
+  <table border="1">
+    <tr>
+      <td><strong>Name</strong></td>
+      <td><strong>Annotation type</strong></td>
+      <td><strong>Description</strong></td>
+    </tr>
+    <tr>
+      <td><strong>JRonn</strong>[2]</td>
+      <td>Annotation Row</td>
+      <td>RONN score for each residue in the sequence. Scores above
+        0.5 identify regions of the protein likely to be disordered.</td>
+    </tr>
+  </table>
+  <p>
+    <em>[2]. JRonn denotes the score for this server because JABAWS
+      runs a Java port of RONN developed by Peter Troshin and
+      distributed as part of <a href="http://www.biojava.org/">Biojava
+        3</a>
+    </em>
+  </p>
+  <p>
+    <strong><a name="iupred"></a><a
+      href="http://iupred.enzim.hu/Help.php"
+    >IUPred</a></strong><br /> IUPred employs an empirical model to estimate
+    likely regions of disorder. There are three different prediction
+    types offered, each using different parameters optimized for
+    slightly different applications. It provides raw scores based on two
+    models for predicting regions of 'long disorder' and 'short
+    disorder'. A third predictor identifies regions likely to form
+    structured domains.
+  </p>
+  <table border="1">
+    <tr>
+      <td><strong>Name</strong></td>
+      <td><strong>Annotation type</strong></td>
+      <td><strong>Description</strong></td>
+    </tr>
+    <tr>
+      <td><strong>Long disorder</strong></td>
+      <td>Annotation Row</td>
+      <td>Prediction of context-independent global disorder that
+        encompasses at least 30 consecutive residues of predicted
+        disorder. Employs a 100 residue window for calculation.<br />Values
+        above 0.5 indicates the residue is intrinsically disordered.
+      </td>
+    </tr>
+    <tr>
+      <td><strong>Short disorder</strong></td>
+      <td>Annotation Row</td>
+      <td>Predictor for short, (and probably) context-dependent,
+        disordered regions, such as missing residues in the X-ray
+        structure of an otherwise globular protein. Employs a 25 residue
+        window for calculation, and includes adjustment parameter for
+        chain termini which favors disorder prediction at the ends.<br />Values
+        above 0.5 indicate short-range disorder.
+      </td>
+    </tr>
+    <tr>
+      <td><strong>Structured domains</strong></td>
+      <td>Sequence Feature</td>
+      <td>Features highlighting likely globular domains useful for
+        structure genomics investigation. <br />Post-analysis of
+        disordered region profile to find continuous regions confidently
+        predicted to be ordered. Neighbouring regions close to each
+        other are merged, while regions shorter than the minimal domain
+        size of at least 30 residues are ignored.
+      </td>
+    </tr>
+  </table>
+  <p>
+    <strong><a name="globplot"></a><a
+      href="http://globplot.embl.de/"
+    >GLOBPLOT</a></strong><br /> Defines regions of globularity or natively
+    unstructured regions based on a running sum of the propensity of
+    residues to be structured or unstructured. The propensity is
+    calculated based on the probability of each amino acid being
+    observed within well defined regions of secondary structure or
+    within regions of random coil. The initial signal is smoothed with a
+    Savitzky-Golay filter, and its first order derivative computed.
+    Residues for which the first order derivative is positive are
+    designated as natively unstructured, whereas those with negative
+    values are structured.<br />
+  <table border="1">
+    <tr>
+      <td><strong>Name</strong></td>
+      <td><strong>Annotation type</strong></td>
+      <td><strong>Description</strong></td>
+    </tr>
+    <tr>
+      <td><strong>Disordered Region</strong></td>
+      <td>Sequence Feature</td>
+      <td><br />Sequence features marking range(s) of residues
+        with positive dydx values (correspond to the #Disorder column
+        from JABAWS results)</td>
+    </tr>
+    <tr>
+      <td><strong>Globular Domain</strong>
+      <td>Sequence Feature</td>
+      <td>Putative globular domains</td>
+    </tr>
+    <tr>
+      <td><strong>Dydx</strong></td>
+      <td>Annotation row</td>
+      <td>First order derivative of smoothed score. Values above 0
+        indicates residue is disordered.</td>
+    </tr>
+    <tr>
+      <td><strong>Smoothed Score<br />Raw Score
+      </strong></td>
+      <td>Annotation Row</td>
+      <td>The smoothed and raw scores used to create the
+        differential signal that indicates the presence of unstructured
+        regions.<br /> <em>These are hidden by default, but can be
+          shown by right-clicking on the alignment annotation panel and
+          selecting <strong>Show hidden annotation</strong>
+      </em>
+      </td>
+    </tr>
+  </table>
+  <p>
+    <em>Documentation and thresholds for the JABAWS Disorder
+      predictors adapted from a personal communication by Nancy Giang,
+      2012.</em>
+  </p>
 </body>
 </html>