JAL-1432 updated copyright notices
[jalview.git] / help / html / webServices / proteinDisorder.html
1 <html>
2 <!--
3  * Jalview - A Sequence Alignment Editor and Viewer (Version 2.8.0b1)
4  * Copyright (C) 2014 The Jalview Authors
5  * 
6  * This file is part of Jalview.
7  * 
8  * Jalview is free software: you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License 
10  * as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
11  *  
12  * Jalview is distributed in the hope that it will be useful, but 
13  * WITHOUT ANY WARRANTY; without even the implied warranty 
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
15  * PURPOSE.  See the GNU General Public License for more details.
16  * 
17  * You should have received a copy of the GNU General Public License along with Jalview.  If not, see <http://www.gnu.org/licenses/>.
18  * The Jalview Authors are detailed in the 'AUTHORS' file.
19 -->
20 <head>
21 <title>JABAWS Protein Disorder Prediction Services</title>
22 </head>
23 <body>
24         <p>
25                 <strong>JABAWS Protein Disorder Prediction Services</strong> <br />
26                 The <strong>Web Services&rarr;Disorder</strong> menu in the alignment
27                 window allows access to protein disorder prediction services provided
28                 by the configured <a href="http://www.compbio.dundee.ac.uk/jabaws">JABAWS
29                         servers</a>. Each service operates on sequences in the alignment to
30                 identify regions likely to be unstructured or flexible, or
31                 alternately, fold to form globular domains.
32         </p>
33         <p>
34                 Predictor results include both <a href="../features/seqfeatures.html">sequence
35                         features</a> and sequence associated <a
36                         href="../features/annotation.html">alignment annotation</a> rows.
37                 Features display is controlled from the <a
38                         href="../features/featureSettings.html">Feature Settings</a> dialog
39                 box. Clicking on the ID for a disorder prediction annotation row will
40                 highlight or select (if double clicked) the associated sequence for
41                 that row. You can also use the <em>Sequence Associated</em> option in
42                 the <a href="../colourSchemes/annotationColouring.html">Colour By
43                         Annotation</a> dialog box to colour sequences according to the results of
44                 predictors shown as annotation rows.
45         </p>
46         <p>JABAWS 2.0 provides four disorder predictors which are described
47                 below:</p>
48         <ul>
49                 <li><a href="#disembl">DisEMBL</a></li>
50                 <li><a href="#iupred">IUPred</a></li>
51                 <li><a href="#ronn">RONN</a></li>
52                 <li><a href="#globplot">GlobPlot</a></li>
53         </ul>
54         <p>
55                 <strong><a name="disembl"></a><a href="http://dis.embl.de/">DisEMBL
56                                 (Linding et al., 2003)</a> </strong> <br /> DisEMBL is a set of machine-learning
57                 based predictors trained to recognise disorder-related annotation
58                 found on PDB structures.
59         </p>
60         <table border="1">
61                 <tr>
62                         <td><strong>Name</strong></td>
63                         <td><strong>Annotation type</strong></td>
64                         <td><strong>Description</strong></td>
65                 </tr>
66                 <tr>
67                         <td><strong>COILS</strong></td>
68                         <td>Sequence Feature &amp;<br />Annotation Row
69                         </td>
70                         <td>Predicts loops/coils according to DSSP definition<a
71                                 href="#dsspstates">[1]</a>.<br />Features mark range(s) of residues
72                                 predicted as loops/coils, and annotation row gives raw value for
73                                 each residue. Value over 0.516 indicates loop/coil.
74                         </td>
75                 </tr>
76                 <tr>
77                         <td><strong>HOTLOOPS</strong></td>
78                         <td>Sequence Feature &amp;<br />Annotation Row
79                         </td>
80                         <td>&quot;Hot loops constitute a refined subset of <strong>COILS</strong>,
81                                 namely those loops with a high degree of mobility as determined from
82                                 C&alpha; temperature factors (B factors). It follows that highly
83                                 dynamic loops should be considered protein disorder.&quot;<br />
84                                 Features mark range(s) of residues predicted to be hot loops and
85                                 annotation row gives raw value for each residue. Values over 0.6
86                                 indicates hot loop.
87                         </td>
88                 </tr>
89                 <tr>
90                         <td><strong>REMARK465</strong></td>
91                         <td>Sequence Feature &amp;<br />Annotation Row
92                         </td>
93                         <td>&quot;Missing coordinates in X-ray structure as defined by
94                                 remark465 entries in PDB. Nonassigned electron densities most often
95                                 reflect intrinsic disorder, and have been used early on in disorder
96                                 prediction.&quot;<br /> Features gives range(s) of residues
97                                 predicted as disordered, and annotation row gives raw value for each
98                                 residue. Value over 0.1204 indicates disorder.
99                         </td>
100                 </tr>
101         </table>
102
103         <p>
104                 <a name="dsspstates"></a>[1]. DSSP Classification: &alpha;-helix (H),
105                 310-helix (G), &beta;-strand (E) are ordered, and all other states
106                 (&beta;-bridge (B), &beta;-turn (T), bend (S), &pi;-helix (I), and
107                 coil (C)) considered loops or coils.
108         </p>
109
110
111         <p>
112                 <strong><a name="ronn"></a><a
113                         href="http://www.strubi.ox.ac.uk/RONN">RONN</a></strong> <em>a.k.a.</em>
114                 Regional Order Neural Network<br />This predictor employs an approach
115                 known as the 'bio-basis' method to predict regions of disorder in
116                 sequences based on their local similarity with a gold-standard set of
117                 disordered protein sequences. It yields a set of disorder prediction
118                 scores, which are shown as sequence annotation below the alignment.
119         </p>
120         <table border="1">
121                 <tr>
122                         <td><strong>Name</strong></td>
123                         <td><strong>Annotation type</strong></td>
124                         <td><strong>Description</strong></td>
125                 </tr>
126                 <tr>
127                         <td><strong>JRonn</strong>[2]</td>
128                         <td>Annotation Row</td>
129                         <td>RONN score for each residue in the sequence. Scores above
130                                 0.5 identify regions of the protein likely to be disordered.</td>
131                 </tr>
132         </table>
133         <p>
134                 <em>[2]. JRonn denotes the score for this server because JABAWS
135                         runs a Java port of RONN developed by Peter Troshin and distributed
136                         as part of <a href="http://www.biojava.org/">Biojava 3</a>
137                 </em>
138         </p>
139         <p>
140                 <strong><a name="iupred"></a><a
141                         href="http://iupred.enzim.hu/Help.php">IUPred</a></strong><br /> IUPred
142                 employs an empirical model to estimate likely regions of disorder.
143                 There are three different prediction types offered, each using
144                 different parameters optimized for slightly different applications. It
145                 provides raw scores based on two models for predicting regions of
146                 'long disorder' and 'short disorder'. A third predictor identifies
147                 regions likely to form structured domains.
148         </p>
149         <table border="1">
150                 <tr>
151                         <td><strong>Name</strong></td>
152                         <td><strong>Annotation type</strong></td>
153                         <td><strong>Description</strong></td>
154                 </tr>
155                 <tr>
156                         <td><strong>Long disorder</strong></td>
157                         <td>Annotation Row</td>
158                         <td>Prediction of context-independent global disorder that
159                                 encompasses at least 30 consecutive residues of predicted disorder.
160                                 Employs a 100 residue window for calculation.<br />Values above 0.5
161                                 indicates the residue is intrinsically disordered.
162                         </td>
163                 </tr>
164                 <tr>
165                         <td><strong>Short disorder</strong></td>
166                         <td>Annotation Row</td>
167                         <td>Predictor for short, (and probably) context-dependent,
168                                 disordered regions, such as missing residues in the X-ray structure
169                                 of an otherwise globular protein. Employs a 25 residue window for
170                                 calculation, and includes adjustment parameter for chain termini
171                                 which favors disorder prediction at the ends.<br />Values above 0.5
172                                 indicate short-range disorder.
173                         </td>
174                 </tr>
175                 <tr>
176                         <td><strong>Structured domains</strong></td>
177                         <td>Sequence Feature</td>
178                         <td>Features highlighting likely globular domains useful for
179                                 structure genomics investigation. <br />Post-analysis of disordered
180                                 region profile to find continuous regions confidently predicted to
181                                 be ordered. Neighbouring regions close to each other are merged,
182                                 while regions shorter than the minimal domain size of at least 30
183                                 residues are ignored.
184                         </td>
185                 </tr>
186         </table>
187         <p>
188                 <strong><a name="globplot"></a><a
189                         href="http://globplot.embl.de/">GLOBPLOT</a></strong><br /> Defines regions
190                 of globularity or natively unstructured regions based on a running sum
191                 of the propensity of residues to be structured or unstructured. The
192                 propensity is calculated based on the probability of each amino acid
193                 being observed within well defined regions of secondary structure or
194                 within regions of random coil. The initial signal is smoothed with a
195                 Savitzky-Golay filter, and its first order derivative computed.
196                 Residues for which the first order derivative is positive are
197                 designated as natively unstructured, whereas those with negative
198                 values are structured.<br />
199         <table border="1">
200                 <tr>
201                         <td><strong>Name</strong></td>
202                         <td><strong>Annotation type</strong></td>
203                         <td><strong>Description</strong></td>
204                 </tr>
205                 <tr>
206                         <td><strong>Disordered Region</strong></td>
207                         <td>Sequence Feature</td>
208                         <td><br />Sequence features marking range(s) of residues with
209                                 positive dydx values (correspond to the #Disorder column from JABAWS
210                                 results)</td>
211                 </tr>
212                 <tr>
213                         <td><strong>Globular Domain</strong>
214                         <td>Sequence Feature</td>
215                         <td>Putative globular domains</td>
216                 </tr>
217                 <tr>
218                         <td><strong>Dydx</strong></td>
219                         <td>Annotation row</td>
220                         <td>First order derivative of smoothed score. Values above 0
221                                 indicates residue is disordered.</td>
222                 </tr>
223                 <tr>
224                         <td><strong>Smoothed Score<br />Raw Score
225                         </strong></td>
226                         <td>Annotation Row</td>
227                         <td>The smoothed and raw scores used to create the differential
228                                 signal that indicates the presence of unstructured regions.<br /> <em>These
229                                         are hidden by default, but can be shown by right-clicking on the
230                                         alignment annotation panel and selecting <strong>Show
231                                                 hidden annotation</strong>
232                         </em>
233                         </td>
234                 </tr>
235         </table>
236         <p>
237                 <em>Documentation and thresholds for the JABAWS Disorder
238                         predictors adapted from a personal communication by Nancy Giang,
239                         2012.</em>
240         </p>
241 </body>
242 </html>