WSTester updated to work plus hopefully all the other changes that need to go into...
[jabaws.git] / binaries / src / ViennaRNA / libsvm-2.91 / svm.cpp
diff --git a/binaries/src/ViennaRNA/libsvm-2.91/svm.cpp b/binaries/src/ViennaRNA/libsvm-2.91/svm.cpp
new file mode 100644 (file)
index 0000000..546fe76
--- /dev/null
@@ -0,0 +1,3069 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+       dst = new T[n];
+       memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+       double tmp = base, ret = 1.0;
+
+       for(int t=times; t>0; t/=2)
+       {
+               if(t%2==1) ret*=tmp;
+               tmp = tmp * tmp;
+       }
+       return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+       fputs(s,stdout);
+       fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+       char buf[BUFSIZ];
+       va_list ap;
+       va_start(ap,fmt);
+       vsprintf(buf,fmt,ap);
+       va_end(ap);
+       (*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+       Cache(int l,long int size);
+       ~Cache();
+
+       // request data [0,len)
+       // return some position p where [p,len) need to be filled
+       // (p >= len if nothing needs to be filled)
+       int get_data(const int index, Qfloat **data, int len);
+       void swap_index(int i, int j);  
+private:
+       int l;
+       long int size;
+       struct head_t
+       {
+               head_t *prev, *next;    // a circular list
+               Qfloat *data;
+               int len;                // data[0,len) is cached in this entry
+       };
+
+       head_t *head;
+       head_t lru_head;
+       void lru_delete(head_t *h);
+       void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+       head = (head_t *)calloc(l,sizeof(head_t));      // initialized to 0
+       size /= sizeof(Qfloat);
+       size -= l * sizeof(head_t) / sizeof(Qfloat);
+       size = max(size, 2 * (long int) l);     // cache must be large enough for two columns
+       lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+       for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+               free(h->data);
+       free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+       // delete from current location
+       h->prev->next = h->next;
+       h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+       // insert to last position
+       h->next = &lru_head;
+       h->prev = lru_head.prev;
+       h->prev->next = h;
+       h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+       head_t *h = &head[index];
+       if(h->len) lru_delete(h);
+       int more = len - h->len;
+
+       if(more > 0)
+       {
+               // free old space
+               while(size < more)
+               {
+                       head_t *old = lru_head.next;
+                       lru_delete(old);
+                       free(old->data);
+                       size += old->len;
+                       old->data = 0;
+                       old->len = 0;
+               }
+
+               // allocate new space
+               h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+               size -= more;
+               swap(h->len,len);
+       }
+
+       lru_insert(h);
+       *data = h->data;
+       return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+       if(i==j) return;
+
+       if(head[i].len) lru_delete(&head[i]);
+       if(head[j].len) lru_delete(&head[j]);
+       swap(head[i].data,head[j].data);
+       swap(head[i].len,head[j].len);
+       if(head[i].len) lru_insert(&head[i]);
+       if(head[j].len) lru_insert(&head[j]);
+
+       if(i>j) swap(i,j);
+       for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+       {
+               if(h->len > i)
+               {
+                       if(h->len > j)
+                               swap(h->data[i],h->data[j]);
+                       else
+                       {
+                               // give up
+                               lru_delete(h);
+                               free(h->data);
+                               size += h->len;
+                               h->data = 0;
+                               h->len = 0;
+                       }
+               }
+       }
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+       virtual Qfloat *get_Q(int column, int len) const = 0;
+       virtual Qfloat *get_QD() const = 0;
+       virtual void swap_index(int i, int j) const = 0;
+       virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+       Kernel(int l, svm_node * const * x, const svm_parameter& param);
+       virtual ~Kernel();
+
+       static double k_function(const svm_node *x, const svm_node *y,
+                                const svm_parameter& param);
+       virtual Qfloat *get_Q(int column, int len) const = 0;
+       virtual Qfloat *get_QD() const = 0;
+       virtual void swap_index(int i, int j) const     // no so const...
+       {
+               swap(x[i],x[j]);
+               if(x_square) swap(x_square[i],x_square[j]);
+       }
+protected:
+
+       double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+       const svm_node **x;
+       double *x_square;
+
+       // svm_parameter
+       const int kernel_type;
+       const int degree;
+       const double gamma;
+       const double coef0;
+
+       static double dot(const svm_node *px, const svm_node *py);
+       double kernel_linear(int i, int j) const
+       {
+               return dot(x[i],x[j]);
+       }
+       double kernel_poly(int i, int j) const
+       {
+               return powi(gamma*dot(x[i],x[j])+coef0,degree);
+       }
+       double kernel_rbf(int i, int j) const
+       {
+               return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+       }
+       double kernel_sigmoid(int i, int j) const
+       {
+               return tanh(gamma*dot(x[i],x[j])+coef0);
+       }
+       double kernel_precomputed(int i, int j) const
+       {
+               return x[i][(int)(x[j][0].value)].value;
+       }
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+       switch(kernel_type)
+       {
+               case LINEAR:
+                       kernel_function = &Kernel::kernel_linear;
+                       break;
+               case POLY:
+                       kernel_function = &Kernel::kernel_poly;
+                       break;
+               case RBF:
+                       kernel_function = &Kernel::kernel_rbf;
+                       break;
+               case SIGMOID:
+                       kernel_function = &Kernel::kernel_sigmoid;
+                       break;
+               case PRECOMPUTED:
+                       kernel_function = &Kernel::kernel_precomputed;
+                       break;
+       }
+
+       clone(x,x_,l);
+
+       if(kernel_type == RBF)
+       {
+               x_square = new double[l];
+               for(int i=0;i<l;i++)
+                       x_square[i] = dot(x[i],x[i]);
+       }
+       else
+               x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+       delete[] x;
+       delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+       double sum = 0;
+       while(px->index != -1 && py->index != -1)
+       {
+               if(px->index == py->index)
+               {
+                       sum += px->value * py->value;
+                       ++px;
+                       ++py;
+               }
+               else
+               {
+                       if(px->index > py->index)
+                               ++py;
+                       else
+                               ++px;
+               }                       
+       }
+       return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+                         const svm_parameter& param)
+{
+       switch(param.kernel_type)
+       {
+               case LINEAR:
+                       return dot(x,y);
+               case POLY:
+                       return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+               case RBF:
+               {
+                       double sum = 0;
+                       while(x->index != -1 && y->index !=-1)
+                       {
+                               if(x->index == y->index)
+                               {
+                                       double d = x->value - y->value;
+                                       sum += d*d;
+                                       ++x;
+                                       ++y;
+                               }
+                               else
+                               {
+                                       if(x->index > y->index)
+                                       {       
+                                               sum += y->value * y->value;
+                                               ++y;
+                                       }
+                                       else
+                                       {
+                                               sum += x->value * x->value;
+                                               ++x;
+                                       }
+                               }
+                       }
+
+                       while(x->index != -1)
+                       {
+                               sum += x->value * x->value;
+                               ++x;
+                       }
+
+                       while(y->index != -1)
+                       {
+                               sum += y->value * y->value;
+                               ++y;
+                       }
+                       
+                       return exp(-param.gamma*sum);
+               }
+               case SIGMOID:
+                       return tanh(param.gamma*dot(x,y)+param.coef0);
+               case PRECOMPUTED:  //x: test (validation), y: SV
+                       return x[(int)(y->value)].value;
+               default:
+                       return 0;  // Unreachable 
+       }
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//     min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//             y^T \alpha = \delta
+//             y_i = +1 or -1
+//             0 <= alpha_i <= Cp for y_i = 1
+//             0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//     Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//     l is the size of vectors and matrices
+//     eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+       Solver() {};
+       virtual ~Solver() {};
+
+       struct SolutionInfo {
+               double obj;
+               double rho;
+               double upper_bound_p;
+               double upper_bound_n;
+               double r;       // for Solver_NU
+       };
+
+       void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+                  double *alpha_, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking);
+protected:
+       int active_size;
+       schar *y;
+       double *G;              // gradient of objective function
+       enum { LOWER_BOUND, UPPER_BOUND, FREE };
+       char *alpha_status;     // LOWER_BOUND, UPPER_BOUND, FREE
+       double *alpha;
+       const QMatrix *Q;
+       const Qfloat *QD;
+       double eps;
+       double Cp,Cn;
+       double *p;
+       int *active_set;
+       double *G_bar;          // gradient, if we treat free variables as 0
+       int l;
+       bool unshrink;  // XXX
+
+       double get_C(int i)
+       {
+               return (y[i] > 0)? Cp : Cn;
+       }
+       void update_alpha_status(int i)
+       {
+               if(alpha[i] >= get_C(i))
+                       alpha_status[i] = UPPER_BOUND;
+               else if(alpha[i] <= 0)
+                       alpha_status[i] = LOWER_BOUND;
+               else alpha_status[i] = FREE;
+       }
+       bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+       bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+       bool is_free(int i) { return alpha_status[i] == FREE; }
+       void swap_index(int i, int j);
+       void reconstruct_gradient();
+       virtual int select_working_set(int &i, int &j);
+       virtual double calculate_rho();
+       virtual void do_shrinking();
+private:
+       bool be_shrunk(int i, double Gmax1, double Gmax2);      
+};
+
+void Solver::swap_index(int i, int j)
+{
+       Q->swap_index(i,j);
+       swap(y[i],y[j]);
+       swap(G[i],G[j]);
+       swap(alpha_status[i],alpha_status[j]);
+       swap(alpha[i],alpha[j]);
+       swap(p[i],p[j]);
+       swap(active_set[i],active_set[j]);
+       swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+       // reconstruct inactive elements of G from G_bar and free variables
+
+       if(active_size == l) return;
+
+       int i,j;
+       int nr_free = 0;
+
+       for(j=active_size;j<l;j++)
+               G[j] = G_bar[j] + p[j];
+
+       for(j=0;j<active_size;j++)
+               if(is_free(j))
+                       nr_free++;
+
+       if(2*nr_free < active_size)
+               info("\nWarning: using -h 0 may be faster\n");
+
+       if (nr_free*l > 2*active_size*(l-active_size))
+       {
+               for(i=active_size;i<l;i++)
+               {
+                       const Qfloat *Q_i = Q->get_Q(i,active_size);
+                       for(j=0;j<active_size;j++)
+                               if(is_free(j))
+                                       G[i] += alpha[j] * Q_i[j];
+               }
+       }
+       else
+       {
+               for(i=0;i<active_size;i++)
+                       if(is_free(i))
+                       {
+                               const Qfloat *Q_i = Q->get_Q(i,l);
+                               double alpha_i = alpha[i];
+                               for(j=active_size;j<l;j++)
+                                       G[j] += alpha_i * Q_i[j];
+                       }
+       }
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+                  double *alpha_, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking)
+{
+       this->l = l;
+       this->Q = &Q;
+       QD=Q.get_QD();
+       clone(p, p_,l);
+       clone(y, y_,l);
+       clone(alpha,alpha_,l);
+       this->Cp = Cp;
+       this->Cn = Cn;
+       this->eps = eps;
+       unshrink = false;
+
+       // initialize alpha_status
+       {
+               alpha_status = new char[l];
+               for(int i=0;i<l;i++)
+                       update_alpha_status(i);
+       }
+
+       // initialize active set (for shrinking)
+       {
+               active_set = new int[l];
+               for(int i=0;i<l;i++)
+                       active_set[i] = i;
+               active_size = l;
+       }
+
+       // initialize gradient
+       {
+               G = new double[l];
+               G_bar = new double[l];
+               int i;
+               for(i=0;i<l;i++)
+               {
+                       G[i] = p[i];
+                       G_bar[i] = 0;
+               }
+               for(i=0;i<l;i++)
+                       if(!is_lower_bound(i))
+                       {
+                               const Qfloat *Q_i = Q.get_Q(i,l);
+                               double alpha_i = alpha[i];
+                               int j;
+                               for(j=0;j<l;j++)
+                                       G[j] += alpha_i*Q_i[j];
+                               if(is_upper_bound(i))
+                                       for(j=0;j<l;j++)
+                                               G_bar[j] += get_C(i) * Q_i[j];
+                       }
+       }
+
+       // optimization step
+
+       int iter = 0;
+       int counter = min(l,1000)+1;
+
+       while(1)
+       {
+               // show progress and do shrinking
+
+               if(--counter == 0)
+               {
+                       counter = min(l,1000);
+                       if(shrinking) do_shrinking();
+                       info(".");
+               }
+
+               int i,j;
+               if(select_working_set(i,j)!=0)
+               {
+                       // reconstruct the whole gradient
+                       reconstruct_gradient();
+                       // reset active set size and check
+                       active_size = l;
+                       info("*");
+                       if(select_working_set(i,j)!=0)
+                               break;
+                       else
+                               counter = 1;    // do shrinking next iteration
+               }
+               
+               ++iter;
+
+               // update alpha[i] and alpha[j], handle bounds carefully
+               
+               const Qfloat *Q_i = Q.get_Q(i,active_size);
+               const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+               double C_i = get_C(i);
+               double C_j = get_C(j);
+
+               double old_alpha_i = alpha[i];
+               double old_alpha_j = alpha[j];
+
+               if(y[i]!=y[j])
+               {
+                       double quad_coef = Q_i[i]+Q_j[j]+2*Q_i[j];
+                       if (quad_coef <= 0)
+                               quad_coef = TAU;
+                       double delta = (-G[i]-G[j])/quad_coef;
+                       double diff = alpha[i] - alpha[j];
+                       alpha[i] += delta;
+                       alpha[j] += delta;
+                       
+                       if(diff > 0)
+                       {
+                               if(alpha[j] < 0)
+                               {
+                                       alpha[j] = 0;
+                                       alpha[i] = diff;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[i] < 0)
+                               {
+                                       alpha[i] = 0;
+                                       alpha[j] = -diff;
+                               }
+                       }
+                       if(diff > C_i - C_j)
+                       {
+                               if(alpha[i] > C_i)
+                               {
+                                       alpha[i] = C_i;
+                                       alpha[j] = C_i - diff;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[j] > C_j)
+                               {
+                                       alpha[j] = C_j;
+                                       alpha[i] = C_j + diff;
+                               }
+                       }
+               }
+               else
+               {
+                       double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j];
+                       if (quad_coef <= 0)
+                               quad_coef = TAU;
+                       double delta = (G[i]-G[j])/quad_coef;
+                       double sum = alpha[i] + alpha[j];
+                       alpha[i] -= delta;
+                       alpha[j] += delta;
+
+                       if(sum > C_i)
+                       {
+                               if(alpha[i] > C_i)
+                               {
+                                       alpha[i] = C_i;
+                                       alpha[j] = sum - C_i;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[j] < 0)
+                               {
+                                       alpha[j] = 0;
+                                       alpha[i] = sum;
+                               }
+                       }
+                       if(sum > C_j)
+                       {
+                               if(alpha[j] > C_j)
+                               {
+                                       alpha[j] = C_j;
+                                       alpha[i] = sum - C_j;
+                               }
+                       }
+                       else
+                       {
+                               if(alpha[i] < 0)
+                               {
+                                       alpha[i] = 0;
+                                       alpha[j] = sum;
+                               }
+                       }
+               }
+
+               // update G
+
+               double delta_alpha_i = alpha[i] - old_alpha_i;
+               double delta_alpha_j = alpha[j] - old_alpha_j;
+               
+               for(int k=0;k<active_size;k++)
+               {
+                       G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+               }
+
+               // update alpha_status and G_bar
+
+               {
+                       bool ui = is_upper_bound(i);
+                       bool uj = is_upper_bound(j);
+                       update_alpha_status(i);
+                       update_alpha_status(j);
+                       int k;
+                       if(ui != is_upper_bound(i))
+                       {
+                               Q_i = Q.get_Q(i,l);
+                               if(ui)
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] -= C_i * Q_i[k];
+                               else
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] += C_i * Q_i[k];
+                       }
+
+                       if(uj != is_upper_bound(j))
+                       {
+                               Q_j = Q.get_Q(j,l);
+                               if(uj)
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] -= C_j * Q_j[k];
+                               else
+                                       for(k=0;k<l;k++)
+                                               G_bar[k] += C_j * Q_j[k];
+                       }
+               }
+       }
+
+       // calculate rho
+
+       si->rho = calculate_rho();
+
+       // calculate objective value
+       {
+               double v = 0;
+               int i;
+               for(i=0;i<l;i++)
+                       v += alpha[i] * (G[i] + p[i]);
+
+               si->obj = v/2;
+       }
+
+       // put back the solution
+       {
+               for(int i=0;i<l;i++)
+                       alpha_[active_set[i]] = alpha[i];
+       }
+
+       // juggle everything back
+       /*{
+               for(int i=0;i<l;i++)
+                       while(active_set[i] != i)
+                               swap_index(i,active_set[i]);
+                               // or Q.swap_index(i,active_set[i]);
+       }*/
+
+       si->upper_bound_p = Cp;
+       si->upper_bound_n = Cn;
+
+       info("\noptimization finished, #iter = %d\n",iter);
+
+       delete[] p;
+       delete[] y;
+       delete[] alpha;
+       delete[] alpha_status;
+       delete[] active_set;
+       delete[] G;
+       delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+       // return i,j such that
+       // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+       // j: minimizes the decrease of obj value
+       //    (if quadratic coefficeint <= 0, replace it with tau)
+       //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+       
+       double Gmax = -INF;
+       double Gmax2 = -INF;
+       int Gmax_idx = -1;
+       int Gmin_idx = -1;
+       double obj_diff_min = INF;
+
+       for(int t=0;t<active_size;t++)
+               if(y[t]==+1)    
+               {
+                       if(!is_upper_bound(t))
+                               if(-G[t] >= Gmax)
+                               {
+                                       Gmax = -G[t];
+                                       Gmax_idx = t;
+                               }
+               }
+               else
+               {
+                       if(!is_lower_bound(t))
+                               if(G[t] >= Gmax)
+                               {
+                                       Gmax = G[t];
+                                       Gmax_idx = t;
+                               }
+               }
+
+       int i = Gmax_idx;
+       const Qfloat *Q_i = NULL;
+       if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+               Q_i = Q->get_Q(i,active_size);
+
+       for(int j=0;j<active_size;j++)
+       {
+               if(y[j]==+1)
+               {
+                       if (!is_lower_bound(j))
+                       {
+                               double grad_diff=Gmax+G[j];
+                               if (G[j] >= Gmax2)
+                                       Gmax2 = G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef=Q_i[i]+QD[j]-2.0*y[i]*Q_i[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+               else
+               {
+                       if (!is_upper_bound(j))
+                       {
+                               double grad_diff= Gmax-G[j];
+                               if (-G[j] >= Gmax2)
+                                       Gmax2 = -G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef=Q_i[i]+QD[j]+2.0*y[i]*Q_i[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       if(Gmax+Gmax2 < eps)
+               return 1;
+
+       out_i = Gmax_idx;
+       out_j = Gmin_idx;
+       return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+       if(is_upper_bound(i))
+       {
+               if(y[i]==+1)
+                       return(-G[i] > Gmax1);
+               else
+                       return(-G[i] > Gmax2);
+       }
+       else if(is_lower_bound(i))
+       {
+               if(y[i]==+1)
+                       return(G[i] > Gmax2);
+               else    
+                       return(G[i] > Gmax1);
+       }
+       else
+               return(false);
+}
+
+void Solver::do_shrinking()
+{
+       int i;
+       double Gmax1 = -INF;            // max { -y_i * grad(f)_i | i in I_up(\alpha) }
+       double Gmax2 = -INF;            // max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+       // find maximal violating pair first
+       for(i=0;i<active_size;i++)
+       {
+               if(y[i]==+1)    
+               {
+                       if(!is_upper_bound(i))  
+                       {
+                               if(-G[i] >= Gmax1)
+                                       Gmax1 = -G[i];
+                       }
+                       if(!is_lower_bound(i))  
+                       {
+                               if(G[i] >= Gmax2)
+                                       Gmax2 = G[i];
+                       }
+               }
+               else    
+               {
+                       if(!is_upper_bound(i))  
+                       {
+                               if(-G[i] >= Gmax2)
+                                       Gmax2 = -G[i];
+                       }
+                       if(!is_lower_bound(i))  
+                       {
+                               if(G[i] >= Gmax1)
+                                       Gmax1 = G[i];
+                       }
+               }
+       }
+
+       if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+       {
+               unshrink = true;
+               reconstruct_gradient();
+               active_size = l;
+               info("*");
+       }
+
+       for(i=0;i<active_size;i++)
+               if (be_shrunk(i, Gmax1, Gmax2))
+               {
+                       active_size--;
+                       while (active_size > i)
+                       {
+                               if (!be_shrunk(active_size, Gmax1, Gmax2))
+                               {
+                                       swap_index(i,active_size);
+                                       break;
+                               }
+                               active_size--;
+                       }
+               }
+}
+
+double Solver::calculate_rho()
+{
+       double r;
+       int nr_free = 0;
+       double ub = INF, lb = -INF, sum_free = 0;
+       for(int i=0;i<active_size;i++)
+       {
+               double yG = y[i]*G[i];
+
+               if(is_upper_bound(i))
+               {
+                       if(y[i]==-1)
+                               ub = min(ub,yG);
+                       else
+                               lb = max(lb,yG);
+               }
+               else if(is_lower_bound(i))
+               {
+                       if(y[i]==+1)
+                               ub = min(ub,yG);
+                       else
+                               lb = max(lb,yG);
+               }
+               else
+               {
+                       ++nr_free;
+                       sum_free += yG;
+               }
+       }
+
+       if(nr_free>0)
+               r = sum_free/nr_free;
+       else
+               r = (ub+lb)/2;
+
+       return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+       Solver_NU() {}
+       void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+                  double *alpha, double Cp, double Cn, double eps,
+                  SolutionInfo* si, int shrinking)
+       {
+               this->si = si;
+               Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+       }
+private:
+       SolutionInfo *si;
+       int select_working_set(int &i, int &j);
+       double calculate_rho();
+       bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+       void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+       // return i,j such that y_i = y_j and
+       // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+       // j: minimizes the decrease of obj value
+       //    (if quadratic coefficeint <= 0, replace it with tau)
+       //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+       double Gmaxp = -INF;
+       double Gmaxp2 = -INF;
+       int Gmaxp_idx = -1;
+
+       double Gmaxn = -INF;
+       double Gmaxn2 = -INF;
+       int Gmaxn_idx = -1;
+
+       int Gmin_idx = -1;
+       double obj_diff_min = INF;
+
+       for(int t=0;t<active_size;t++)
+               if(y[t]==+1)
+               {
+                       if(!is_upper_bound(t))
+                               if(-G[t] >= Gmaxp)
+                               {
+                                       Gmaxp = -G[t];
+                                       Gmaxp_idx = t;
+                               }
+               }
+               else
+               {
+                       if(!is_lower_bound(t))
+                               if(G[t] >= Gmaxn)
+                               {
+                                       Gmaxn = G[t];
+                                       Gmaxn_idx = t;
+                               }
+               }
+
+       int ip = Gmaxp_idx;
+       int in = Gmaxn_idx;
+       const Qfloat *Q_ip = NULL;
+       const Qfloat *Q_in = NULL;
+       if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+               Q_ip = Q->get_Q(ip,active_size);
+       if(in != -1)
+               Q_in = Q->get_Q(in,active_size);
+
+       for(int j=0;j<active_size;j++)
+       {
+               if(y[j]==+1)
+               {
+                       if (!is_lower_bound(j)) 
+                       {
+                               double grad_diff=Gmaxp+G[j];
+                               if (G[j] >= Gmaxp2)
+                                       Gmaxp2 = G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+               else
+               {
+                       if (!is_upper_bound(j))
+                       {
+                               double grad_diff=Gmaxn-G[j];
+                               if (-G[j] >= Gmaxn2)
+                                       Gmaxn2 = -G[j];
+                               if (grad_diff > 0)
+                               {
+                                       double obj_diff; 
+                                       double quad_coef = Q_in[in]+QD[j]-2*Q_in[j];
+                                       if (quad_coef > 0)
+                                               obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                                       else
+                                               obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                                       if (obj_diff <= obj_diff_min)
+                                       {
+                                               Gmin_idx=j;
+                                               obj_diff_min = obj_diff;
+                                       }
+                               }
+                       }
+               }
+       }
+
+       if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+               return 1;
+
+       if (y[Gmin_idx] == +1)
+               out_i = Gmaxp_idx;
+       else
+               out_i = Gmaxn_idx;
+       out_j = Gmin_idx;
+
+       return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+       if(is_upper_bound(i))
+       {
+               if(y[i]==+1)
+                       return(-G[i] > Gmax1);
+               else    
+                       return(-G[i] > Gmax4);
+       }
+       else if(is_lower_bound(i))
+       {
+               if(y[i]==+1)
+                       return(G[i] > Gmax2);
+               else    
+                       return(G[i] > Gmax3);
+       }
+       else
+               return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+       double Gmax1 = -INF;    // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+       double Gmax2 = -INF;    // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+       double Gmax3 = -INF;    // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+       double Gmax4 = -INF;    // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+       // find maximal violating pair first
+       int i;
+       for(i=0;i<active_size;i++)
+       {
+               if(!is_upper_bound(i))
+               {
+                       if(y[i]==+1)
+                       {
+                               if(-G[i] > Gmax1) Gmax1 = -G[i];
+                       }
+                       else    if(-G[i] > Gmax4) Gmax4 = -G[i];
+               }
+               if(!is_lower_bound(i))
+               {
+                       if(y[i]==+1)
+                       {       
+                               if(G[i] > Gmax2) Gmax2 = G[i];
+                       }
+                       else    if(G[i] > Gmax3) Gmax3 = G[i];
+               }
+       }
+
+       if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+       {
+               unshrink = true;
+               reconstruct_gradient();
+               active_size = l;
+       }
+
+       for(i=0;i<active_size;i++)
+               if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+               {
+                       active_size--;
+                       while (active_size > i)
+                       {
+                               if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+                               {
+                                       swap_index(i,active_size);
+                                       break;
+                               }
+                               active_size--;
+                       }
+               }
+}
+
+double Solver_NU::calculate_rho()
+{
+       int nr_free1 = 0,nr_free2 = 0;
+       double ub1 = INF, ub2 = INF;
+       double lb1 = -INF, lb2 = -INF;
+       double sum_free1 = 0, sum_free2 = 0;
+
+       for(int i=0;i<active_size;i++)
+       {
+               if(y[i]==+1)
+               {
+                       if(is_upper_bound(i))
+                               lb1 = max(lb1,G[i]);
+                       else if(is_lower_bound(i))
+                               ub1 = min(ub1,G[i]);
+                       else
+                       {
+                               ++nr_free1;
+                               sum_free1 += G[i];
+                       }
+               }
+               else
+               {
+                       if(is_upper_bound(i))
+                               lb2 = max(lb2,G[i]);
+                       else if(is_lower_bound(i))
+                               ub2 = min(ub2,G[i]);
+                       else
+                       {
+                               ++nr_free2;
+                               sum_free2 += G[i];
+                       }
+               }
+       }
+
+       double r1,r2;
+       if(nr_free1 > 0)
+               r1 = sum_free1/nr_free1;
+       else
+               r1 = (ub1+lb1)/2;
+       
+       if(nr_free2 > 0)
+               r2 = sum_free2/nr_free2;
+       else
+               r2 = (ub2+lb2)/2;
+       
+       si->r = (r1+r2)/2;
+       return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+       SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+       :Kernel(prob.l, prob.x, param)
+       {
+               clone(y,y_,prob.l);
+               cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+               QD = new Qfloat[prob.l];
+               for(int i=0;i<prob.l;i++)
+                       QD[i]= (Qfloat)(this->*kernel_function)(i,i);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int start, j;
+               if((start = cache->get_data(i,&data,len)) < len)
+               {
+                       for(j=start;j<len;j++)
+                               data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+               }
+               return data;
+       }
+
+       Qfloat *get_QD() const
+       {
+               return QD;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               cache->swap_index(i,j);
+               Kernel::swap_index(i,j);
+               swap(y[i],y[j]);
+               swap(QD[i],QD[j]);
+       }
+
+       ~SVC_Q()
+       {
+               delete[] y;
+               delete cache;
+               delete[] QD;
+       }
+private:
+       schar *y;
+       Cache *cache;
+       Qfloat *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+       ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+       :Kernel(prob.l, prob.x, param)
+       {
+               cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+               QD = new Qfloat[prob.l];
+               for(int i=0;i<prob.l;i++)
+                       QD[i]= (Qfloat)(this->*kernel_function)(i,i);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int start, j;
+               if((start = cache->get_data(i,&data,len)) < len)
+               {
+                       for(j=start;j<len;j++)
+                               data[j] = (Qfloat)(this->*kernel_function)(i,j);
+               }
+               return data;
+       }
+
+       Qfloat *get_QD() const
+       {
+               return QD;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               cache->swap_index(i,j);
+               Kernel::swap_index(i,j);
+               swap(QD[i],QD[j]);
+       }
+
+       ~ONE_CLASS_Q()
+       {
+               delete cache;
+               delete[] QD;
+       }
+private:
+       Cache *cache;
+       Qfloat *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+       SVR_Q(const svm_problem& prob, const svm_parameter& param)
+       :Kernel(prob.l, prob.x, param)
+       {
+               l = prob.l;
+               cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+               QD = new Qfloat[2*l];
+               sign = new schar[2*l];
+               index = new int[2*l];
+               for(int k=0;k<l;k++)
+               {
+                       sign[k] = 1;
+                       sign[k+l] = -1;
+                       index[k] = k;
+                       index[k+l] = k;
+                       QD[k]= (Qfloat)(this->*kernel_function)(k,k);
+                       QD[k+l]=QD[k];
+               }
+               buffer[0] = new Qfloat[2*l];
+               buffer[1] = new Qfloat[2*l];
+               next_buffer = 0;
+       }
+
+       void swap_index(int i, int j) const
+       {
+               swap(sign[i],sign[j]);
+               swap(index[i],index[j]);
+               swap(QD[i],QD[j]);
+       }
+       
+       Qfloat *get_Q(int i, int len) const
+       {
+               Qfloat *data;
+               int j, real_i = index[i];
+               if(cache->get_data(real_i,&data,l) < l)
+               {
+                       for(j=0;j<l;j++)
+                               data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+               }
+
+               // reorder and copy
+               Qfloat *buf = buffer[next_buffer];
+               next_buffer = 1 - next_buffer;
+               schar si = sign[i];
+               for(j=0;j<len;j++)
+                       buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+               return buf;
+       }
+
+       Qfloat *get_QD() const
+       {
+               return QD;
+       }
+
+       ~SVR_Q()
+       {
+               delete cache;
+               delete[] sign;
+               delete[] index;
+               delete[] buffer[0];
+               delete[] buffer[1];
+               delete[] QD;
+       }
+private:
+       int l;
+       Cache *cache;
+       schar *sign;
+       int *index;
+       mutable int next_buffer;
+       Qfloat *buffer[2];
+       Qfloat *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+       const svm_problem *prob, const svm_parameter* param,
+       double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+       int l = prob->l;
+       double *minus_ones = new double[l];
+       schar *y = new schar[l];
+
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               alpha[i] = 0;
+               minus_ones[i] = -1;
+               if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;
+       }
+
+       Solver s;
+       s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+               alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+       double sum_alpha=0;
+       for(i=0;i<l;i++)
+               sum_alpha += alpha[i];
+
+       if (Cp==Cn)
+               info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+       for(i=0;i<l;i++)
+               alpha[i] *= y[i];
+
+       delete[] minus_ones;
+       delete[] y;
+}
+
+static void solve_nu_svc(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int i;
+       int l = prob->l;
+       double nu = param->nu;
+
+       schar *y = new schar[l];
+
+       for(i=0;i<l;i++)
+               if(prob->y[i]>0)
+                       y[i] = +1;
+               else
+                       y[i] = -1;
+
+       double sum_pos = nu*l/2;
+       double sum_neg = nu*l/2;
+
+       for(i=0;i<l;i++)
+               if(y[i] == +1)
+               {
+                       alpha[i] = min(1.0,sum_pos);
+                       sum_pos -= alpha[i];
+               }
+               else
+               {
+                       alpha[i] = min(1.0,sum_neg);
+                       sum_neg -= alpha[i];
+               }
+
+       double *zeros = new double[l];
+
+       for(i=0;i<l;i++)
+               zeros[i] = 0;
+
+       Solver_NU s;
+       s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+               alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+       double r = si->r;
+
+       info("C = %f\n",1/r);
+
+       for(i=0;i<l;i++)
+               alpha[i] *= y[i]/r;
+
+       si->rho /= r;
+       si->obj /= (r*r);
+       si->upper_bound_p = 1/r;
+       si->upper_bound_n = 1/r;
+
+       delete[] y;
+       delete[] zeros;
+}
+
+static void solve_one_class(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double *zeros = new double[l];
+       schar *ones = new schar[l];
+       int i;
+
+       int n = (int)(param->nu*prob->l);       // # of alpha's at upper bound
+
+       for(i=0;i<n;i++)
+               alpha[i] = 1;
+       if(n<prob->l)
+               alpha[n] = param->nu * prob->l - n;
+       for(i=n+1;i<l;i++)
+               alpha[i] = 0;
+
+       for(i=0;i<l;i++)
+       {
+               zeros[i] = 0;
+               ones[i] = 1;
+       }
+
+       Solver s;
+       s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+               alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+       delete[] zeros;
+       delete[] ones;
+}
+
+static void solve_epsilon_svr(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double *alpha2 = new double[2*l];
+       double *linear_term = new double[2*l];
+       schar *y = new schar[2*l];
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               alpha2[i] = 0;
+               linear_term[i] = param->p - prob->y[i];
+               y[i] = 1;
+
+               alpha2[i+l] = 0;
+               linear_term[i+l] = param->p + prob->y[i];
+               y[i+l] = -1;
+       }
+
+       Solver s;
+       s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+               alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+       double sum_alpha = 0;
+       for(i=0;i<l;i++)
+       {
+               alpha[i] = alpha2[i] - alpha2[i+l];
+               sum_alpha += fabs(alpha[i]);
+       }
+       info("nu = %f\n",sum_alpha/(param->C*l));
+
+       delete[] alpha2;
+       delete[] linear_term;
+       delete[] y;
+}
+
+static void solve_nu_svr(
+       const svm_problem *prob, const svm_parameter *param,
+       double *alpha, Solver::SolutionInfo* si)
+{
+       int l = prob->l;
+       double C = param->C;
+       double *alpha2 = new double[2*l];
+       double *linear_term = new double[2*l];
+       schar *y = new schar[2*l];
+       int i;
+
+       double sum = C * param->nu * l / 2;
+       for(i=0;i<l;i++)
+       {
+               alpha2[i] = alpha2[i+l] = min(sum,C);
+               sum -= alpha2[i];
+
+               linear_term[i] = - prob->y[i];
+               y[i] = 1;
+
+               linear_term[i+l] = prob->y[i];
+               y[i+l] = -1;
+       }
+
+       Solver_NU s;
+       s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+               alpha2, C, C, param->eps, si, param->shrinking);
+
+       info("epsilon = %f\n",-si->r);
+
+       for(i=0;i<l;i++)
+               alpha[i] = alpha2[i] - alpha2[i+l];
+
+       delete[] alpha2;
+       delete[] linear_term;
+       delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+       double *alpha;
+       double rho;     
+};
+
+static decision_function svm_train_one(
+       const svm_problem *prob, const svm_parameter *param,
+       double Cp, double Cn)
+{
+       double *alpha = Malloc(double,prob->l);
+       Solver::SolutionInfo si;
+       switch(param->svm_type)
+       {
+               case C_SVC:
+                       solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+                       break;
+               case NU_SVC:
+                       solve_nu_svc(prob,param,alpha,&si);
+                       break;
+               case ONE_CLASS:
+                       solve_one_class(prob,param,alpha,&si);
+                       break;
+               case EPSILON_SVR:
+                       solve_epsilon_svr(prob,param,alpha,&si);
+                       break;
+               case NU_SVR:
+                       solve_nu_svr(prob,param,alpha,&si);
+                       break;
+       }
+
+       info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+       // output SVs
+
+       int nSV = 0;
+       int nBSV = 0;
+       for(int i=0;i<prob->l;i++)
+       {
+               if(fabs(alpha[i]) > 0)
+               {
+                       ++nSV;
+                       if(prob->y[i] > 0)
+                       {
+                               if(fabs(alpha[i]) >= si.upper_bound_p)
+                                       ++nBSV;
+                       }
+                       else
+                       {
+                               if(fabs(alpha[i]) >= si.upper_bound_n)
+                                       ++nBSV;
+                       }
+               }
+       }
+
+       info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+       decision_function f;
+       f.alpha = alpha;
+       f.rho = si.rho;
+       return f;
+}
+
+//
+// svm_model
+// 
+struct svm_model
+{
+       struct svm_parameter param;     /* parameter */
+       int nr_class;           /* number of classes, = 2 in regression/one class svm */
+       int l;                  /* total #SV */
+       struct svm_node **SV;           /* SVs (SV[l]) */
+       double **sv_coef;       /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+       double *rho;            /* constants in decision functions (rho[k*(k-1)/2]) */
+       double *probA;          /* pariwise probability information */
+       double *probB;
+
+       /* for classification only */
+
+       int *label;             /* label of each class (label[k]) */
+       int *nSV;               /* number of SVs for each class (nSV[k]) */
+                               /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+       /* XXX */
+       int free_sv;            /* 1 if svm_model is created by svm_load_model*/
+                               /* 0 if svm_model is created by svm_train */
+};
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+       int l, const double *dec_values, const double *labels, 
+       double& A, double& B)
+{
+       double prior1=0, prior0 = 0;
+       int i;
+
+       for (i=0;i<l;i++)
+               if (labels[i] > 0) prior1+=1;
+               else prior0+=1;
+       
+       int max_iter=100;       // Maximal number of iterations
+       double min_step=1e-10;  // Minimal step taken in line search
+       double sigma=1e-12;     // For numerically strict PD of Hessian
+       double eps=1e-5;
+       double hiTarget=(prior1+1.0)/(prior1+2.0);
+       double loTarget=1/(prior0+2.0);
+       double *t=Malloc(double,l);
+       double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+       double newA,newB,newf,d1,d2;
+       int iter; 
+       
+       // Initial Point and Initial Fun Value
+       A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+       double fval = 0.0;
+
+       for (i=0;i<l;i++)
+       {
+               if (labels[i]>0) t[i]=hiTarget;
+               else t[i]=loTarget;
+               fApB = dec_values[i]*A+B;
+               if (fApB>=0)
+                       fval += t[i]*fApB + log(1+exp(-fApB));
+               else
+                       fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+       }
+       for (iter=0;iter<max_iter;iter++)
+       {
+               // Update Gradient and Hessian (use H' = H + sigma I)
+               h11=sigma; // numerically ensures strict PD
+               h22=sigma;
+               h21=0.0;g1=0.0;g2=0.0;
+               for (i=0;i<l;i++)
+               {
+                       fApB = dec_values[i]*A+B;
+                       if (fApB >= 0)
+                       {
+                               p=exp(-fApB)/(1.0+exp(-fApB));
+                               q=1.0/(1.0+exp(-fApB));
+                       }
+                       else
+                       {
+                               p=1.0/(1.0+exp(fApB));
+                               q=exp(fApB)/(1.0+exp(fApB));
+                       }
+                       d2=p*q;
+                       h11+=dec_values[i]*dec_values[i]*d2;
+                       h22+=d2;
+                       h21+=dec_values[i]*d2;
+                       d1=t[i]-p;
+                       g1+=dec_values[i]*d1;
+                       g2+=d1;
+               }
+
+               // Stopping Criteria
+               if (fabs(g1)<eps && fabs(g2)<eps)
+                       break;
+
+               // Finding Newton direction: -inv(H') * g
+               det=h11*h22-h21*h21;
+               dA=-(h22*g1 - h21 * g2) / det;
+               dB=-(-h21*g1+ h11 * g2) / det;
+               gd=g1*dA+g2*dB;
+
+
+               stepsize = 1;           // Line Search
+               while (stepsize >= min_step)
+               {
+                       newA = A + stepsize * dA;
+                       newB = B + stepsize * dB;
+
+                       // New function value
+                       newf = 0.0;
+                       for (i=0;i<l;i++)
+                       {
+                               fApB = dec_values[i]*newA+newB;
+                               if (fApB >= 0)
+                                       newf += t[i]*fApB + log(1+exp(-fApB));
+                               else
+                                       newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+                       }
+                       // Check sufficient decrease
+                       if (newf<fval+0.0001*stepsize*gd)
+                       {
+                               A=newA;B=newB;fval=newf;
+                               break;
+                       }
+                       else
+                               stepsize = stepsize / 2.0;
+               }
+
+               if (stepsize < min_step)
+               {
+                       info("Line search fails in two-class probability estimates\n");
+                       break;
+               }
+       }
+
+       if (iter>=max_iter)
+               info("Reaching maximal iterations in two-class probability estimates\n");
+       free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+       double fApB = decision_value*A+B;
+       if (fApB >= 0)
+               return exp(-fApB)/(1.0+exp(-fApB));
+       else
+               return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+       int t,j;
+       int iter = 0, max_iter=max(100,k);
+       double **Q=Malloc(double *,k);
+       double *Qp=Malloc(double,k);
+       double pQp, eps=0.005/k;
+       
+       for (t=0;t<k;t++)
+       {
+               p[t]=1.0/k;  // Valid if k = 1
+               Q[t]=Malloc(double,k);
+               Q[t][t]=0;
+               for (j=0;j<t;j++)
+               {
+                       Q[t][t]+=r[j][t]*r[j][t];
+                       Q[t][j]=Q[j][t];
+               }
+               for (j=t+1;j<k;j++)
+               {
+                       Q[t][t]+=r[j][t]*r[j][t];
+                       Q[t][j]=-r[j][t]*r[t][j];
+               }
+       }
+       for (iter=0;iter<max_iter;iter++)
+       {
+               // stopping condition, recalculate QP,pQP for numerical accuracy
+               pQp=0;
+               for (t=0;t<k;t++)
+               {
+                       Qp[t]=0;
+                       for (j=0;j<k;j++)
+                               Qp[t]+=Q[t][j]*p[j];
+                       pQp+=p[t]*Qp[t];
+               }
+               double max_error=0;
+               for (t=0;t<k;t++)
+               {
+                       double error=fabs(Qp[t]-pQp);
+                       if (error>max_error)
+                               max_error=error;
+               }
+               if (max_error<eps) break;
+               
+               for (t=0;t<k;t++)
+               {
+                       double diff=(-Qp[t]+pQp)/Q[t][t];
+                       p[t]+=diff;
+                       pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+                       for (j=0;j<k;j++)
+                       {
+                               Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+                               p[j]/=(1+diff);
+                       }
+               }
+       }
+       if (iter>=max_iter)
+               info("Exceeds max_iter in multiclass_prob\n");
+       for(t=0;t<k;t++) free(Q[t]);
+       free(Q);
+       free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+       const svm_problem *prob, const svm_parameter *param,
+       double Cp, double Cn, double& probA, double& probB)
+{
+       int i;
+       int nr_fold = 5;
+       int *perm = Malloc(int,prob->l);
+       double *dec_values = Malloc(double,prob->l);
+
+       // random shuffle
+       for(i=0;i<prob->l;i++) perm[i]=i;
+       for(i=0;i<prob->l;i++)
+       {
+               int j = i+rand()%(prob->l-i);
+               swap(perm[i],perm[j]);
+       }
+       for(i=0;i<nr_fold;i++)
+       {
+               int begin = i*prob->l/nr_fold;
+               int end = (i+1)*prob->l/nr_fold;
+               int j,k;
+               struct svm_problem subprob;
+
+               subprob.l = prob->l-(end-begin);
+               subprob.x = Malloc(struct svm_node*,subprob.l);
+               subprob.y = Malloc(double,subprob.l);
+                       
+               k=0;
+               for(j=0;j<begin;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               for(j=end;j<prob->l;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               int p_count=0,n_count=0;
+               for(j=0;j<k;j++)
+                       if(subprob.y[j]>0)
+                               p_count++;
+                       else
+                               n_count++;
+
+               if(p_count==0 && n_count==0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = 0;
+               else if(p_count > 0 && n_count == 0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = 1;
+               else if(p_count == 0 && n_count > 0)
+                       for(j=begin;j<end;j++)
+                               dec_values[perm[j]] = -1;
+               else
+               {
+                       svm_parameter subparam = *param;
+                       subparam.probability=0;
+                       subparam.C=1.0;
+                       subparam.nr_weight=2;
+                       subparam.weight_label = Malloc(int,2);
+                       subparam.weight = Malloc(double,2);
+                       subparam.weight_label[0]=+1;
+                       subparam.weight_label[1]=-1;
+                       subparam.weight[0]=Cp;
+                       subparam.weight[1]=Cn;
+                       struct svm_model *submodel = svm_train(&subprob,&subparam);
+                       for(j=begin;j<end;j++)
+                       {
+                               svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+                               // ensure +1 -1 order; reason not using CV subroutine
+                               dec_values[perm[j]] *= submodel->label[0];
+                       }               
+                       svm_destroy_model(submodel);
+                       svm_destroy_param(&subparam);
+               }
+               free(subprob.x);
+               free(subprob.y);
+       }               
+       sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+       free(dec_values);
+       free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+       const svm_problem *prob, const svm_parameter *param)
+{
+       int i;
+       int nr_fold = 5;
+       double *ymv = Malloc(double,prob->l);
+       double mae = 0;
+
+       svm_parameter newparam = *param;
+       newparam.probability = 0;
+       svm_cross_validation(prob,&newparam,nr_fold,ymv);
+       for(i=0;i<prob->l;i++)
+       {
+               ymv[i]=prob->y[i]-ymv[i];
+               mae += fabs(ymv[i]);
+       }               
+       mae /= prob->l;
+       double std=sqrt(2*mae*mae);
+       int count=0;
+       mae=0;
+       for(i=0;i<prob->l;i++)
+               if (fabs(ymv[i]) > 5*std) 
+                       count=count+1;
+               else 
+                       mae+=fabs(ymv[i]);
+       mae /= (prob->l-count);
+       info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+       free(ymv);
+       return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+       int l = prob->l;
+       int max_nr_class = 16;
+       int nr_class = 0;
+       int *label = Malloc(int,max_nr_class);
+       int *count = Malloc(int,max_nr_class);
+       int *data_label = Malloc(int,l);        
+       int i;
+
+       for(i=0;i<l;i++)
+       {
+               int this_label = (int)prob->y[i];
+               int j;
+               for(j=0;j<nr_class;j++)
+               {
+                       if(this_label == label[j])
+                       {
+                               ++count[j];
+                               break;
+                       }
+               }
+               data_label[i] = j;
+               if(j == nr_class)
+               {
+                       if(nr_class == max_nr_class)
+                       {
+                               max_nr_class *= 2;
+                               label = (int *)realloc(label,max_nr_class*sizeof(int));
+                               count = (int *)realloc(count,max_nr_class*sizeof(int));
+                       }
+                       label[nr_class] = this_label;
+                       count[nr_class] = 1;
+                       ++nr_class;
+               }
+       }
+
+       int *start = Malloc(int,nr_class);
+       start[0] = 0;
+       for(i=1;i<nr_class;i++)
+               start[i] = start[i-1]+count[i-1];
+       for(i=0;i<l;i++)
+       {
+               perm[start[data_label[i]]] = i;
+               ++start[data_label[i]];
+       }
+       start[0] = 0;
+       for(i=1;i<nr_class;i++)
+               start[i] = start[i-1]+count[i-1];
+
+       *nr_class_ret = nr_class;
+       *label_ret = label;
+       *start_ret = start;
+       *count_ret = count;
+       free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+       svm_model *model = Malloc(svm_model,1);
+       model->param = *param;
+       model->free_sv = 0;     // XXX
+
+       if(param->svm_type == ONE_CLASS ||
+          param->svm_type == EPSILON_SVR ||
+          param->svm_type == NU_SVR)
+       {
+               // regression or one-class-svm
+               model->nr_class = 2;
+               model->label = NULL;
+               model->nSV = NULL;
+               model->probA = NULL; model->probB = NULL;
+               model->sv_coef = Malloc(double *,1);
+
+               if(param->probability && 
+                  (param->svm_type == EPSILON_SVR ||
+                   param->svm_type == NU_SVR))
+               {
+                       model->probA = Malloc(double,1);
+                       model->probA[0] = svm_svr_probability(prob,param);
+               }
+
+               decision_function f = svm_train_one(prob,param,0,0);
+               model->rho = Malloc(double,1);
+               model->rho[0] = f.rho;
+
+               int nSV = 0;
+               int i;
+               for(i=0;i<prob->l;i++)
+                       if(fabs(f.alpha[i]) > 0) ++nSV;
+               model->l = nSV;
+               model->SV = Malloc(svm_node *,nSV);
+               model->sv_coef[0] = Malloc(double,nSV);
+               int j = 0;
+               for(i=0;i<prob->l;i++)
+                       if(fabs(f.alpha[i]) > 0)
+                       {
+                               model->SV[j] = prob->x[i];
+                               model->sv_coef[0][j] = f.alpha[i];
+                               ++j;
+                       }               
+
+               free(f.alpha);
+       }
+       else
+       {
+               // classification
+               int l = prob->l;
+               int nr_class;
+               int *label = NULL;
+               int *start = NULL;
+               int *count = NULL;
+               int *perm = Malloc(int,l);
+
+               // group training data of the same class
+               svm_group_classes(prob,&nr_class,&label,&start,&count,perm);            
+               svm_node **x = Malloc(svm_node *,l);
+               int i;
+               for(i=0;i<l;i++)
+                       x[i] = prob->x[perm[i]];
+
+               // calculate weighted C
+
+               double *weighted_C = Malloc(double, nr_class);
+               for(i=0;i<nr_class;i++)
+                       weighted_C[i] = param->C;
+               for(i=0;i<param->nr_weight;i++)
+               {       
+                       int j;
+                       for(j=0;j<nr_class;j++)
+                               if(param->weight_label[i] == label[j])
+                                       break;
+                       if(j == nr_class)
+                               fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);
+                       else
+                               weighted_C[j] *= param->weight[i];
+               }
+
+               // train k*(k-1)/2 models
+               
+               bool *nonzero = Malloc(bool,l);
+               for(i=0;i<l;i++)
+                       nonzero[i] = false;
+               decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+               double *probA=NULL,*probB=NULL;
+               if (param->probability)
+               {
+                       probA=Malloc(double,nr_class*(nr_class-1)/2);
+                       probB=Malloc(double,nr_class*(nr_class-1)/2);
+               }
+
+               int p = 0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               svm_problem sub_prob;
+                               int si = start[i], sj = start[j];
+                               int ci = count[i], cj = count[j];
+                               sub_prob.l = ci+cj;
+                               sub_prob.x = Malloc(svm_node *,sub_prob.l);
+                               sub_prob.y = Malloc(double,sub_prob.l);
+                               int k;
+                               for(k=0;k<ci;k++)
+                               {
+                                       sub_prob.x[k] = x[si+k];
+                                       sub_prob.y[k] = +1;
+                               }
+                               for(k=0;k<cj;k++)
+                               {
+                                       sub_prob.x[ci+k] = x[sj+k];
+                                       sub_prob.y[ci+k] = -1;
+                               }
+
+                               if(param->probability)
+                                       svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+                               f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+                               for(k=0;k<ci;k++)
+                                       if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+                                               nonzero[si+k] = true;
+                               for(k=0;k<cj;k++)
+                                       if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+                                               nonzero[sj+k] = true;
+                               free(sub_prob.x);
+                               free(sub_prob.y);
+                               ++p;
+                       }
+
+               // build output
+
+               model->nr_class = nr_class;
+               
+               model->label = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+                       model->label[i] = label[i];
+               
+               model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+               for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       model->rho[i] = f[i].rho;
+
+               if(param->probability)
+               {
+                       model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+                       model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+                       for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       {
+                               model->probA[i] = probA[i];
+                               model->probB[i] = probB[i];
+                       }
+               }
+               else
+               {
+                       model->probA=NULL;
+                       model->probB=NULL;
+               }
+
+               int total_sv = 0;
+               int *nz_count = Malloc(int,nr_class);
+               model->nSV = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+               {
+                       int nSV = 0;
+                       for(int j=0;j<count[i];j++)
+                               if(nonzero[start[i]+j])
+                               {       
+                                       ++nSV;
+                                       ++total_sv;
+                               }
+                       model->nSV[i] = nSV;
+                       nz_count[i] = nSV;
+               }
+               
+               info("Total nSV = %d\n",total_sv);
+
+               model->l = total_sv;
+               model->SV = Malloc(svm_node *,total_sv);
+               p = 0;
+               for(i=0;i<l;i++)
+                       if(nonzero[i]) model->SV[p++] = x[i];
+
+               int *nz_start = Malloc(int,nr_class);
+               nz_start[0] = 0;
+               for(i=1;i<nr_class;i++)
+                       nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+               model->sv_coef = Malloc(double *,nr_class-1);
+               for(i=0;i<nr_class-1;i++)
+                       model->sv_coef[i] = Malloc(double,total_sv);
+
+               p = 0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               // classifier (i,j): coefficients with
+                               // i are in sv_coef[j-1][nz_start[i]...],
+                               // j are in sv_coef[i][nz_start[j]...]
+
+                               int si = start[i];
+                               int sj = start[j];
+                               int ci = count[i];
+                               int cj = count[j];
+                               
+                               int q = nz_start[i];
+                               int k;
+                               for(k=0;k<ci;k++)
+                                       if(nonzero[si+k])
+                                               model->sv_coef[j-1][q++] = f[p].alpha[k];
+                               q = nz_start[j];
+                               for(k=0;k<cj;k++)
+                                       if(nonzero[sj+k])
+                                               model->sv_coef[i][q++] = f[p].alpha[ci+k];
+                               ++p;
+                       }
+               
+               free(label);
+               free(probA);
+               free(probB);
+               free(count);
+               free(perm);
+               free(start);
+               free(x);
+               free(weighted_C);
+               free(nonzero);
+               for(i=0;i<nr_class*(nr_class-1)/2;i++)
+                       free(f[i].alpha);
+               free(f);
+               free(nz_count);
+               free(nz_start);
+       }
+       return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+       int i;
+       int *fold_start = Malloc(int,nr_fold+1);
+       int l = prob->l;
+       int *perm = Malloc(int,l);
+       int nr_class;
+
+       // stratified cv may not give leave-one-out rate
+       // Each class to l folds -> some folds may have zero elements
+       if((param->svm_type == C_SVC ||
+           param->svm_type == NU_SVC) && nr_fold < l)
+       {
+               int *start = NULL;
+               int *label = NULL;
+               int *count = NULL;
+               svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+               // random shuffle and then data grouped by fold using the array perm
+               int *fold_count = Malloc(int,nr_fold);
+               int c;
+               int *index = Malloc(int,l);
+               for(i=0;i<l;i++)
+                       index[i]=perm[i];
+               for (c=0; c<nr_class; c++) 
+                       for(i=0;i<count[c];i++)
+                       {
+                               int j = i+rand()%(count[c]-i);
+                               swap(index[start[c]+j],index[start[c]+i]);
+                       }
+               for(i=0;i<nr_fold;i++)
+               {
+                       fold_count[i] = 0;
+                       for (c=0; c<nr_class;c++)
+                               fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+               }
+               fold_start[0]=0;
+               for (i=1;i<=nr_fold;i++)
+                       fold_start[i] = fold_start[i-1]+fold_count[i-1];
+               for (c=0; c<nr_class;c++)
+                       for(i=0;i<nr_fold;i++)
+                       {
+                               int begin = start[c]+i*count[c]/nr_fold;
+                               int end = start[c]+(i+1)*count[c]/nr_fold;
+                               for(int j=begin;j<end;j++)
+                               {
+                                       perm[fold_start[i]] = index[j];
+                                       fold_start[i]++;
+                               }
+                       }
+               fold_start[0]=0;
+               for (i=1;i<=nr_fold;i++)
+                       fold_start[i] = fold_start[i-1]+fold_count[i-1];
+               free(start);    
+               free(label);
+               free(count);    
+               free(index);
+               free(fold_count);
+       }
+       else
+       {
+               for(i=0;i<l;i++) perm[i]=i;
+               for(i=0;i<l;i++)
+               {
+                       int j = i+rand()%(l-i);
+                       swap(perm[i],perm[j]);
+               }
+               for(i=0;i<=nr_fold;i++)
+                       fold_start[i]=i*l/nr_fold;
+       }
+
+       for(i=0;i<nr_fold;i++)
+       {
+               int begin = fold_start[i];
+               int end = fold_start[i+1];
+               int j,k;
+               struct svm_problem subprob;
+
+               subprob.l = l-(end-begin);
+               subprob.x = Malloc(struct svm_node*,subprob.l);
+               subprob.y = Malloc(double,subprob.l);
+                       
+               k=0;
+               for(j=0;j<begin;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               for(j=end;j<l;j++)
+               {
+                       subprob.x[k] = prob->x[perm[j]];
+                       subprob.y[k] = prob->y[perm[j]];
+                       ++k;
+               }
+               struct svm_model *submodel = svm_train(&subprob,param);
+               if(param->probability && 
+                  (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+               {
+                       double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+                       for(j=begin;j<end;j++)
+                               target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+                       free(prob_estimates);                   
+               }
+               else
+                       for(j=begin;j<end;j++)
+                               target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+               svm_destroy_model(submodel);
+               free(subprob.x);
+               free(subprob.y);
+       }               
+       free(fold_start);
+       free(perm);     
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+       return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+       return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+       if (model->label != NULL)
+               for(int i=0;i<model->nr_class;i++)
+                       label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+       if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+           model->probA!=NULL)
+               return model->probA[0];
+       else
+       {
+               fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+               return 0;
+       }
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+       if(model->param.svm_type == ONE_CLASS ||
+          model->param.svm_type == EPSILON_SVR ||
+          model->param.svm_type == NU_SVR)
+       {
+               double *sv_coef = model->sv_coef[0];
+               double sum = 0;
+               for(int i=0;i<model->l;i++)
+                       sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+               sum -= model->rho[0];
+               *dec_values = sum;
+
+               if(model->param.svm_type == ONE_CLASS)
+                       return (sum>0)?1:-1;
+               else
+                       return sum;
+       }
+       else
+       {
+               int i;
+               int nr_class = model->nr_class;
+               int l = model->l;
+               
+               double *kvalue = Malloc(double,l);
+               for(i=0;i<l;i++)
+                       kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+               int *start = Malloc(int,nr_class);
+               start[0] = 0;
+               for(i=1;i<nr_class;i++)
+                       start[i] = start[i-1]+model->nSV[i-1];
+
+               int *vote = Malloc(int,nr_class);
+               for(i=0;i<nr_class;i++)
+                       vote[i] = 0;
+
+               int p=0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               double sum = 0;
+                               int si = start[i];
+                               int sj = start[j];
+                               int ci = model->nSV[i];
+                               int cj = model->nSV[j];
+                               
+                               int k;
+                               double *coef1 = model->sv_coef[j-1];
+                               double *coef2 = model->sv_coef[i];
+                               for(k=0;k<ci;k++)
+                                       sum += coef1[si+k] * kvalue[si+k];
+                               for(k=0;k<cj;k++)
+                                       sum += coef2[sj+k] * kvalue[sj+k];
+                               sum -= model->rho[p];
+                               dec_values[p] = sum;
+
+                               if(dec_values[p] > 0)
+                                       ++vote[i];
+                               else
+                                       ++vote[j];
+                               p++;
+                       }
+
+               int vote_max_idx = 0;
+               for(i=1;i<nr_class;i++)
+                       if(vote[i] > vote[vote_max_idx])
+                               vote_max_idx = i;
+
+               free(kvalue);
+               free(start);
+               free(vote);
+               return model->label[vote_max_idx];
+       }
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+       int nr_class = model->nr_class;
+       double *dec_values;
+       if(model->param.svm_type == ONE_CLASS ||
+          model->param.svm_type == EPSILON_SVR ||
+          model->param.svm_type == NU_SVR)
+               dec_values = Malloc(double, 1);
+       else 
+               dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+       double pred_result = svm_predict_values(model, x, dec_values);
+       free(dec_values);
+       return pred_result;
+}
+
+double svm_predict_probability(
+       const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+       if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+           model->probA!=NULL && model->probB!=NULL)
+       {
+               int i;
+               int nr_class = model->nr_class;
+               double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+               svm_predict_values(model, x, dec_values);
+
+               double min_prob=1e-7;
+               double **pairwise_prob=Malloc(double *,nr_class);
+               for(i=0;i<nr_class;i++)
+                       pairwise_prob[i]=Malloc(double,nr_class);
+               int k=0;
+               for(i=0;i<nr_class;i++)
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+                               pairwise_prob[j][i]=1-pairwise_prob[i][j];
+                               k++;
+                       }
+               multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+               int prob_max_idx = 0;
+               for(i=1;i<nr_class;i++)
+                       if(prob_estimates[i] > prob_estimates[prob_max_idx])
+                               prob_max_idx = i;
+               for(i=0;i<nr_class;i++)
+                       free(pairwise_prob[i]);
+               free(dec_values);
+               free(pairwise_prob);         
+               return model->label[prob_max_idx];
+       }
+       else 
+               return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+       "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+       "linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+       FILE *fp = fopen(model_file_name,"w");
+       if(fp==NULL) return -1;
+
+       const svm_parameter& param = model->param;
+
+       fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+       fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+       if(param.kernel_type == POLY)
+               fprintf(fp,"degree %d\n", param.degree);
+
+       if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+               fprintf(fp,"gamma %g\n", param.gamma);
+
+       if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+               fprintf(fp,"coef0 %g\n", param.coef0);
+
+       int nr_class = model->nr_class;
+       int l = model->l;
+       fprintf(fp, "nr_class %d\n", nr_class);
+       fprintf(fp, "total_sv %d\n",l);
+       
+       {
+               fprintf(fp, "rho");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->rho[i]);
+               fprintf(fp, "\n");
+       }
+       
+       if(model->label)
+       {
+               fprintf(fp, "label");
+               for(int i=0;i<nr_class;i++)
+                       fprintf(fp," %d",model->label[i]);
+               fprintf(fp, "\n");
+       }
+
+       if(model->probA) // regression has probA only
+       {
+               fprintf(fp, "probA");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->probA[i]);
+               fprintf(fp, "\n");
+       }
+       if(model->probB)
+       {
+               fprintf(fp, "probB");
+               for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+                       fprintf(fp," %g",model->probB[i]);
+               fprintf(fp, "\n");
+       }
+
+       if(model->nSV)
+       {
+               fprintf(fp, "nr_sv");
+               for(int i=0;i<nr_class;i++)
+                       fprintf(fp," %d",model->nSV[i]);
+               fprintf(fp, "\n");
+       }
+
+       fprintf(fp, "SV\n");
+       const double * const *sv_coef = model->sv_coef;
+       const svm_node * const *SV = model->SV;
+
+       for(int i=0;i<l;i++)
+       {
+               for(int j=0;j<nr_class-1;j++)
+                       fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+               const svm_node *p = SV[i];
+
+               if(param.kernel_type == PRECOMPUTED)
+                       fprintf(fp,"0:%d ",(int)(p->value));
+               else
+                       while(p->index != -1)
+                       {
+                               fprintf(fp,"%d:%.8g ",p->index,p->value);
+                               p++;
+                       }
+               fprintf(fp, "\n");
+       }
+       if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+       else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+       int len;
+
+       if(fgets(line,max_line_len,input) == NULL)
+               return NULL;
+
+       while(strrchr(line,'\n') == NULL)
+       {
+               max_line_len *= 2;
+               line = (char *) realloc(line,max_line_len);
+               len = (int) strlen(line);
+               if(fgets(line+len,max_line_len-len,input) == NULL)
+                       break;
+       }
+       return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+       FILE *fp = fopen(model_file_name,"rb");
+       if(fp==NULL) return NULL;
+       
+       // read parameters
+
+       svm_model *model = Malloc(svm_model,1);
+       svm_parameter& param = model->param;
+       model->rho = NULL;
+       model->probA = NULL;
+       model->probB = NULL;
+       model->label = NULL;
+       model->nSV = NULL;
+
+       char cmd[81];
+       while(1)
+       {
+               fscanf(fp,"%80s",cmd);
+
+               if(strcmp(cmd,"svm_type")==0)
+               {
+                       fscanf(fp,"%80s",cmd);
+                       int i;
+                       for(i=0;svm_type_table[i];i++)
+                       {
+                               if(strcmp(svm_type_table[i],cmd)==0)
+                               {
+                                       param.svm_type=i;
+                                       break;
+                               }
+                       }
+                       if(svm_type_table[i] == NULL)
+                       {
+                               fprintf(stderr,"unknown svm type.\n");
+                               free(model->rho);
+                               free(model->label);
+                               free(model->nSV);
+                               free(model);
+                               return NULL;
+                       }
+               }
+               else if(strcmp(cmd,"kernel_type")==0)
+               {               
+                       fscanf(fp,"%80s",cmd);
+                       int i;
+                       for(i=0;kernel_type_table[i];i++)
+                       {
+                               if(strcmp(kernel_type_table[i],cmd)==0)
+                               {
+                                       param.kernel_type=i;
+                                       break;
+                               }
+                       }
+                       if(kernel_type_table[i] == NULL)
+                       {
+                               fprintf(stderr,"unknown kernel function.\n");
+                               free(model->rho);
+                               free(model->label);
+                               free(model->nSV);
+                               free(model);
+                               return NULL;
+                       }
+               }
+               else if(strcmp(cmd,"degree")==0)
+                       fscanf(fp,"%d",&param.degree);
+               else if(strcmp(cmd,"gamma")==0)
+                       fscanf(fp,"%lf",&param.gamma);
+               else if(strcmp(cmd,"coef0")==0)
+                       fscanf(fp,"%lf",&param.coef0);
+               else if(strcmp(cmd,"nr_class")==0)
+                       fscanf(fp,"%d",&model->nr_class);
+               else if(strcmp(cmd,"total_sv")==0)
+                       fscanf(fp,"%d",&model->l);
+               else if(strcmp(cmd,"rho")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->rho = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->rho[i]);
+               }
+               else if(strcmp(cmd,"label")==0)
+               {
+                       int n = model->nr_class;
+                       model->label = Malloc(int,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%d",&model->label[i]);
+               }
+               else if(strcmp(cmd,"probA")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->probA = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->probA[i]);
+               }
+               else if(strcmp(cmd,"probB")==0)
+               {
+                       int n = model->nr_class * (model->nr_class-1)/2;
+                       model->probB = Malloc(double,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%lf",&model->probB[i]);
+               }
+               else if(strcmp(cmd,"nr_sv")==0)
+               {
+                       int n = model->nr_class;
+                       model->nSV = Malloc(int,n);
+                       for(int i=0;i<n;i++)
+                               fscanf(fp,"%d",&model->nSV[i]);
+               }
+               else if(strcmp(cmd,"SV")==0)
+               {
+                       while(1)
+                       {
+                               int c = getc(fp);
+                               if(c==EOF || c=='\n') break;    
+                       }
+                       break;
+               }
+               else
+               {
+                       fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+                       free(model->rho);
+                       free(model->label);
+                       free(model->nSV);
+                       free(model);
+                       return NULL;
+               }
+       }
+
+       // read sv_coef and SV
+
+       int elements = 0;
+       long pos = ftell(fp);
+
+       max_line_len = 1024;
+       line = Malloc(char,max_line_len);
+       char *p,*endptr,*idx,*val;
+
+       while(readline(fp)!=NULL)
+       {
+               p = strtok(line,":");
+               while(1)
+               {
+                       p = strtok(NULL,":");
+                       if(p == NULL)
+                               break;
+                       ++elements;
+               }
+       }
+       elements += model->l;
+
+       fseek(fp,pos,SEEK_SET);
+
+       int m = model->nr_class - 1;
+       int l = model->l;
+       model->sv_coef = Malloc(double *,m);
+       int i;
+       for(i=0;i<m;i++)
+               model->sv_coef[i] = Malloc(double,l);
+       model->SV = Malloc(svm_node*,l);
+       svm_node *x_space = NULL;
+       if(l>0) x_space = Malloc(svm_node,elements);
+
+       int j=0;
+       for(i=0;i<l;i++)
+       {
+               readline(fp);
+               model->SV[i] = &x_space[j];
+
+               p = strtok(line, " \t");
+               model->sv_coef[0][i] = strtod(p,&endptr);
+               for(int k=1;k<m;k++)
+               {
+                       p = strtok(NULL, " \t");
+                       model->sv_coef[k][i] = strtod(p,&endptr);
+               }
+
+               while(1)
+               {
+                       idx = strtok(NULL, ":");
+                       val = strtok(NULL, " \t");
+
+                       if(val == NULL)
+                               break;
+                       x_space[j].index = (int) strtol(idx,&endptr,10);
+                       x_space[j].value = strtod(val,&endptr);
+
+                       ++j;
+               }
+               x_space[j++].index = -1;
+       }
+       free(line);
+
+       if (ferror(fp) != 0 || fclose(fp) != 0)
+               return NULL;
+
+       model->free_sv = 1;     // XXX
+       return model;
+}
+
+void svm_destroy_model(svm_model* model)
+{
+       if(model->free_sv && model->l > 0)
+               free((void *)(model->SV[0]));
+       for(int i=0;i<model->nr_class-1;i++)
+               free(model->sv_coef[i]);
+       free(model->SV);
+       free(model->sv_coef);
+       free(model->rho);
+       free(model->label);
+       free(model->probA);
+       free(model->probB);
+       free(model->nSV);
+       free(model);
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+       free(param->weight_label);
+       free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+       // svm_type
+
+       int svm_type = param->svm_type;
+       if(svm_type != C_SVC &&
+          svm_type != NU_SVC &&
+          svm_type != ONE_CLASS &&
+          svm_type != EPSILON_SVR &&
+          svm_type != NU_SVR)
+               return "unknown svm type";
+       
+       // kernel_type, degree
+       
+       int kernel_type = param->kernel_type;
+       if(kernel_type != LINEAR &&
+          kernel_type != POLY &&
+          kernel_type != RBF &&
+          kernel_type != SIGMOID &&
+          kernel_type != PRECOMPUTED)
+               return "unknown kernel type";
+
+       if(param->gamma < 0)
+               return "gamma < 0";
+
+       if(param->degree < 0)
+               return "degree of polynomial kernel < 0";
+
+       // cache_size,eps,C,nu,p,shrinking
+
+       if(param->cache_size <= 0)
+               return "cache_size <= 0";
+
+       if(param->eps <= 0)
+               return "eps <= 0";
+
+       if(svm_type == C_SVC ||
+          svm_type == EPSILON_SVR ||
+          svm_type == NU_SVR)
+               if(param->C <= 0)
+                       return "C <= 0";
+
+       if(svm_type == NU_SVC ||
+          svm_type == ONE_CLASS ||
+          svm_type == NU_SVR)
+               if(param->nu <= 0 || param->nu > 1)
+                       return "nu <= 0 or nu > 1";
+
+       if(svm_type == EPSILON_SVR)
+               if(param->p < 0)
+                       return "p < 0";
+
+       if(param->shrinking != 0 &&
+          param->shrinking != 1)
+               return "shrinking != 0 and shrinking != 1";
+
+       if(param->probability != 0 &&
+          param->probability != 1)
+               return "probability != 0 and probability != 1";
+
+       if(param->probability == 1 &&
+          svm_type == ONE_CLASS)
+               return "one-class SVM probability output not supported yet";
+
+
+       // check whether nu-svc is feasible
+       
+       if(svm_type == NU_SVC)
+       {
+               int l = prob->l;
+               int max_nr_class = 16;
+               int nr_class = 0;
+               int *label = Malloc(int,max_nr_class);
+               int *count = Malloc(int,max_nr_class);
+
+               int i;
+               for(i=0;i<l;i++)
+               {
+                       int this_label = (int)prob->y[i];
+                       int j;
+                       for(j=0;j<nr_class;j++)
+                               if(this_label == label[j])
+                               {
+                                       ++count[j];
+                                       break;
+                               }
+                       if(j == nr_class)
+                       {
+                               if(nr_class == max_nr_class)
+                               {
+                                       max_nr_class *= 2;
+                                       label = (int *)realloc(label,max_nr_class*sizeof(int));
+                                       count = (int *)realloc(count,max_nr_class*sizeof(int));
+                               }
+                               label[nr_class] = this_label;
+                               count[nr_class] = 1;
+                               ++nr_class;
+                       }
+               }
+       
+               for(i=0;i<nr_class;i++)
+               {
+                       int n1 = count[i];
+                       for(int j=i+1;j<nr_class;j++)
+                       {
+                               int n2 = count[j];
+                               if(param->nu*(n1+n2)/2 > min(n1,n2))
+                               {
+                                       free(label);
+                                       free(count);
+                                       return "specified nu is infeasible";
+                               }
+                       }
+               }
+               free(label);
+               free(count);
+       }
+
+       return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+       return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+               model->probA!=NULL && model->probB!=NULL) ||
+               ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+                model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+       if(print_func == NULL)
+               svm_print_string = &print_string_stdout;
+       else
+               svm_print_string = print_func;
+}