Wrapper for Clustal Omega.
[jabaws.git] / binaries / src / clustalo / src / hhalign / hhhit.h
diff --git a/binaries/src/clustalo/src/hhalign/hhhit.h b/binaries/src/clustalo/src/hhalign/hhhit.h
new file mode 100644 (file)
index 0000000..676195b
--- /dev/null
@@ -0,0 +1,192 @@
+/* -*- mode: c; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
+
+/*********************************************************************
+ * Clustal Omega - Multiple sequence alignment
+ *
+ * Copyright (C) 2010 University College Dublin
+ *
+ * Clustal-Omega is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * This file is part of Clustal-Omega.
+ *
+ ********************************************************************/
+
+/*
+ * RCS $Id: hhhit.h 243 2011-05-31 13:49:19Z fabian $
+ */
+
+// hhhit.h
+
+//////////////////////////////////////////////////////////////////////////////
+/* Describes an alignment of two profiles. 
+   Used as list element in Hits : List<Hit> */
+//////////////////////////////////////////////////////////////////////////////
+class Hit
+{
+ public:  
+  char* longname;       // Name of HMM
+  char* name;           // One-word name of HMM
+  char* file;           // Basename (with path, without extension) of alignment file that was used to construct the HMM
+                        // (path from db-file is prepended to FILE record in HMM file!)
+  char fam[IDLEN];      // family ID (derived from name) (FAM field)
+  char sfam[IDLEN];     // superfamily ID (derived from name) 
+  char fold[IDLEN];     // fold ID (derived from name)
+  char cl[IDLEN];       // class ID (derived from name)
+  int index;            // index of HMM in order of reading in (first=0)
+  char* dbfile;         // full database file name from which HMM was read
+  long ftellpos;        // start position of HMM in database file
+
+  float score;          // Score of alignment (i.e. of Viterbi path)
+  float score_sort;     // score to sort hits in output list (negative means first/best!)
+  float score_aass;     // first: just hit.score, then hit.logPval-SSSCORE2NATLOG*hit.score_ss;(negative means best!)
+  float score_ss;       // Part of score due to secondary structure
+  float Pval;           // P-value for whole protein based on score distribution of query
+  float Pvalt;          // P-value for whole protein based on score distribution of template
+  float logPval;        // natural logarithm of Pval
+  float logPvalt;       // natural logarithm of Pvalt
+  float Eval;           // E-value for whole protein
+  float Probab;         // probability in % for a positive (depends only on score)
+  float weight;         // weight of hit for P-value calculation (= 1/#HMMs-in-family/#families-in-superfamily)
+  double Pforward;      // scaled total forward probability : Pforward * Product_{i=1}^{Lq+1}(scale[i])
+  
+/*   float score_comp;     // compositional similarity score */
+/*   float logPcomp;       // natural logarithm of Pvalue for compositional similarity score */
+/*   float Prep;           // P-value for single-repeat hit */
+/*   float Erep;           // E-value for single-repeat hit */
+/*   float logPrep;        // natural logarithm of P-value for single-repeat hit */
+  float E1val;          // E-value for whole protein from transitive scoring
+  float logP1val;       // natural logarithm of P1val, the transitive P-value
+
+  int L;                // Number of match states in template
+  int irep;             // Index  of single-repeat hit (1: highest scoring repeat hit)
+  int nrep;             // Number of single-repeat hits with one template
+  
+  int n_display;        // number of sequences stored for display of alignment 
+  char** sname;         // names of stored sequences 
+  char** seq;           // residues of stored sequences (first at pos 1)
+  int nss_dssp;         // index of dssp secondary structure sequence in seq[]
+  int nsa_dssp;         // index of of dssp solvent accessibility in seq[]
+  int nss_pred;         // index of dssp secondary structure sequence in seq[]
+  int nss_conf;         // index of dssp secondary structure sequence in seq[]
+  int nfirst;           // index of query sequence in seq[]
+  int ncons;            // index of consensus sequence
+  
+  int nsteps;           // index for last step in Viterbi path; (first=1)
+  int* i;               // i[step] = query match state at step of Viterbi path
+  int* j;               // j[step] = template match state at step of Viterbi path
+  char* states;         // state at step of Viterbi path  0: Start  1: M(MM)  2: A(-D)  3: B(IM)  4: C(D-)  5 D(MI)
+  float* S;             // S[step] = match-match score contribution at alignment step
+  float* S_ss;          // S_ss[step] = secondary structure score contribution
+  float* P_posterior;   // P_posterior[step] = posterior prob for MM states (otherwise zero)
+  char* Xcons;          // consensus sequence for aligned states in internal representation (A=0 R=1 N=2 D=3 ...)
+  int i1;               // First aligned residue in query
+  int i2;               // Last aligned residue in query
+  int j1;               // First aligned residue in template 
+  int j2;               // Last aligned residue in template
+  int matched_cols;     // number of matched columns in alignment against query
+  int ssm1;             // SS scoring AFTER  alignment? 0:no  1:yes; t->dssp q->psipred  2:yes; q->dssp t->psipred
+  int ssm2;             // SS scoring DURING alignment? 0:no  1:yes; t->dssp q->psipred  2:yes; q->dssp t->psipred
+  char self;            // 0: align two different HMMs  1: align HMM with itself
+  int min_overlap;      // Minimum overlap between query and template
+  float sum_of_probs;   // sum of probabilities for Maximum ACcuracy alignment (if dssp states defined, only aligned pairs with defined dssp state contribute to sum)
+  float Neff_HMM;       // Diversity of underlying alignment
+
+  // Constructor (only set pointers to NULL)
+  Hit();
+  ~Hit(){};
+  
+  // Free all allocated memory (to delete list of hits)
+  void Delete();
+
+  // Allocate/delete memory for dynamic programming matrix
+  void AllocateBacktraceMatrix(int Nq, int Nt);
+  void DeleteBacktraceMatrix(int Nq);
+  void AllocateForwardMatrix(int Nq, int Nt);
+  void DeleteForwardMatrix(int Nq);
+  void AllocateBackwardMatrix(int Nq, int Nt);
+  void DeleteBackwardMatrix(int Nq);
+  
+  // Compare an HMM with overlapping subalignments
+  void Viterbi(HMM& q, HMM& t, float** Sstruc=NULL);
+
+  // Compare two HMMs with each other in lin space
+  int Forward(HMM& q, HMM& t, float** Pstruc=NULL);
+
+  // Compare two HMMs with each other in lin space
+  int Backward(HMM& q, HMM& t);
+
+   // Find maximum accuracy alignment (after running Forward and Backward algorithms)
+  void MACAlignment(HMM& q, HMM& t);
+
+  // Trace back alignment of two profiles based on matrices bXX[][]
+  void Backtrace(HMM& q, HMM& t);
+
+  // Trace back alignment of two profiles based on matrices bXX[][]
+  void StochasticBacktrace(HMM& q, HMM& t, char maximize=0);
+
+  // Trace back MAC alignment of two profiles based on matrix bMM[][]
+  void BacktraceMAC(HMM& q, HMM& t);
+
+  // Calculate secondary structure score between columns i and j of two HMMs (query and template)
+  inline float ScoreSS(HMM& q, HMM& t, int i, int j, int ssm);
+
+  // Calculate secondary structure score between columns i and j of two HMMs (query and template)
+  inline float ScoreSS(HMM& q, HMM& t, int i, int j);
+
+  // Calculate total score (including secondary structure score and compositional bias correction
+  inline float ScoreTot(HMM& q, HMM& t, int i, int j);
+
+  // Calculate score (excluding secondary structure score and compositional bias correction
+  inline float ScoreAA(HMM& q, HMM& t, int i, int j);
+
+  // Comparison (used to sort list of hits)
+  int operator<(const Hit& hit2)  {return score_sort<hit2.score_sort;}
+
+  // Merge HMM with next aligned HMM  
+  void MergeHMM(HMM& Q, HMM& t, float wk[]);
+
+#ifdef CLUSTALO
+  void ClobberGlobal(void);
+#endif  
+
+
+  double** B_MM;        // Backward matrices
+  
+private:
+  char state;          // 0: Start/STOP state  1: MM state  2: GD state (-D)  3: IM state  4: DG state (D-)  5 MI state
+  char** bMM;          // (backtracing) bMM[i][j] = STOP:start of alignment  MM:prev was MM  GD:prev was GD etc
+  char** bGD;          // (backtracing) bMM[i][j] = STOP:start of alignment  MM:prev was MM  SAME:prev was GD
+  char** bDG;          // (backtracing)
+  char** bIM;          // (backtracing)
+  char** bMI;          // (backtracing)
+  char** cell_off;     // cell_off[i][j]=1 means this cell will get score -infinity
+
+  double** F_MM;        // Forward matrices 
+  double** F_GD;        // F_XY[i][j] * Prod_1^i(scale[i]) 
+  double** F_DG;        //   = Sum_x1..xl{ P(HMMs aligned up to Xi||Yj co-emmitted x1..xl ) / (Prod_k=1^l f(x_k)) }   
+  double** F_IM;        // end gaps are not penalized!
+  double** F_MI;        // 
+  double* scale;        // 
+
+  double** B_GD;        // B_XY[i][j] * Prod_i+1^(L+1) (scale[i])
+  double** B_DG;        //   = Sum_x2..xl{ P(HMMs aligned from Xi||Yj to end co-emmitted x2..xl ) / (Prod_k=2^l f(x_k)) }   
+  double** B_IM;        // end gaps are not penalized!
+  double** B_MI;        // 
+
+  void InitializeBacktrace(HMM& q, HMM& t);
+  void InitializeForAlignment(HMM& q, HMM& t);
+};
+
+
+double Pvalue(double x, double a[]);
+double Pvalue(float x, float lamda, float mu);
+double logPvalue(float x, float lamda, float mu);
+double logPvalue(float x, double a[]);
+double Probab(Hit& hit);
+
+
+
+