JAL-1620 version bump and release notes
[jalview.git] / help / html / webServices / proteinDisorder.html
1 <html>
2 <!--
3  * Jalview - A Sequence Alignment Editor and Viewer (Version 2.8.2b1)
4  * Copyright (C) 2014 The Jalview Authors
5  * 
6  * This file is part of Jalview.
7  * 
8  * Jalview is free software: you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License 
10  * as published by the Free Software Foundation, either version 3
11  * of the License, or (at your option) any later version.
12  *  
13  * Jalview is distributed in the hope that it will be useful, but 
14  * WITHOUT ANY WARRANTY; without even the implied warranty 
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
16  * PURPOSE.  See the GNU General Public License for more details.
17  * 
18  * You should have received a copy of the GNU General Public License
19  * along with Jalview.  If not, see <http://www.gnu.org/licenses/>.
20  * The Jalview Authors are detailed in the 'AUTHORS' file.
21  -->
22 <head>
23 <title>JABAWS Protein Disorder Prediction Services</title>
24 </head>
25 <body>
26         <p>
27                 <strong>JABAWS Protein Disorder Prediction Services</strong> <br />
28                 The <strong>Web Services&rarr;Disorder</strong> menu in the alignment
29                 window allows access to protein disorder prediction services provided
30                 by the configured <a href="http://www.compbio.dundee.ac.uk/jabaws">JABAWS
31                         servers</a>. Each service operates on sequences in the alignment or
32                 currently selected region (<em>since Jalview 2.8.0b1</em>) to identify
33                 regions likely to be unstructured or flexible, or alternately, fold to
34                 form globular domains.
35         </p>
36         <p>
37                 Predictor results include both <a href="../features/seqfeatures.html">sequence
38                         features</a> and sequence associated <a
39                         href="../features/annotation.html">alignment annotation</a> rows.
40                 Features display is controlled from the <a
41                         href="../features/featureSettings.html">Feature Settings</a> dialog
42                 box. Clicking on the ID for a disorder prediction annotation row will
43                 highlight or select (if double clicked) the associated sequence for
44                 that row. You can also use the <em>Sequence Associated</em> option in
45                 the <a href="../colourSchemes/annotationColouring.html">Colour By
46                         Annotation</a> dialog box to colour sequences according to the results of
47                 predictors shown as annotation rows.
48         </p>
49         <p>JABAWS 2.0 provides four disorder predictors which are described
50                 below:</p>
51         <ul>
52                 <li><a href="#disembl">DisEMBL</a></li>
53                 <li><a href="#iupred">IUPred</a></li>
54                 <li><a href="#ronn">RONN</a></li>
55                 <li><a href="#globplot">GlobPlot</a></li>
56         </ul>
57         <p>
58                 <strong><a name="disembl"></a><a href="http://dis.embl.de/">DisEMBL
59                                 (Linding et al., 2003)</a> </strong> <br /> DisEMBL is a set of machine-learning
60                 based predictors trained to recognise disorder-related annotation
61                 found on PDB structures.
62         </p>
63         <table border="1">
64                 <tr>
65                         <td><strong>Name</strong></td>
66                         <td><strong>Annotation type</strong></td>
67                         <td><strong>Description</strong></td>
68                 </tr>
69                 <tr>
70                         <td><strong>COILS</strong></td>
71                         <td>Sequence Feature &amp;<br />Annotation Row
72                         </td>
73                         <td>Predicts loops/coils according to DSSP definition<a
74                                 href="#dsspstates">[1]</a>.<br />Features mark range(s) of residues
75                                 predicted as loops/coils, and annotation row gives raw value for
76                                 each residue. Value over 0.516 indicates loop/coil.
77                         </td>
78                 </tr>
79                 <tr>
80                         <td><strong>HOTLOOPS</strong></td>
81                         <td>Sequence Feature &amp;<br />Annotation Row
82                         </td>
83                         <td>&quot;Hot loops constitute a refined subset of <strong>COILS</strong>,
84                                 namely those loops with a high degree of mobility as determined from
85                                 C&alpha; temperature factors (B factors). It follows that highly
86                                 dynamic loops should be considered protein disorder.&quot;<br />
87                                 Features mark range(s) of residues predicted to be hot loops and
88                                 annotation row gives raw value for each residue. Values over 0.6
89                                 indicates hot loop.
90                         </td>
91                 </tr>
92                 <tr>
93                         <td><strong>REMARK465</strong></td>
94                         <td>Sequence Feature &amp;<br />Annotation Row
95                         </td>
96                         <td>&quot;Missing coordinates in X-ray structure as defined by
97                                 remark465 entries in PDB. Nonassigned electron densities most often
98                                 reflect intrinsic disorder, and have been used early on in disorder
99                                 prediction.&quot;<br /> Features gives range(s) of residues
100                                 predicted as disordered, and annotation row gives raw value for each
101                                 residue. Value over 0.1204 indicates disorder.
102                         </td>
103                 </tr>
104         </table>
105
106         <p>
107                 <a name="dsspstates"></a>[1]. DSSP Classification: &alpha;-helix (H),
108                 310-helix (G), &beta;-strand (E) are ordered, and all other states
109                 (&beta;-bridge (B), &beta;-turn (T), bend (S), &pi;-helix (I), and
110                 coil (C)) considered loops or coils.
111         </p>
112
113
114         <p>
115                 <strong><a name="ronn"></a><a
116                         href="http://www.strubi.ox.ac.uk/RONN">RONN</a></strong> <em>a.k.a.</em>
117                 Regional Order Neural Network<br />This predictor employs an approach
118                 known as the 'bio-basis' method to predict regions of disorder in
119                 sequences based on their local similarity with a gold-standard set of
120                 disordered protein sequences. It yields a set of disorder prediction
121                 scores, which are shown as sequence annotation below the alignment.
122         </p>
123         <table border="1">
124                 <tr>
125                         <td><strong>Name</strong></td>
126                         <td><strong>Annotation type</strong></td>
127                         <td><strong>Description</strong></td>
128                 </tr>
129                 <tr>
130                         <td><strong>JRonn</strong>[2]</td>
131                         <td>Annotation Row</td>
132                         <td>RONN score for each residue in the sequence. Scores above
133                                 0.5 identify regions of the protein likely to be disordered.</td>
134                 </tr>
135         </table>
136         <p>
137                 <em>[2]. JRonn denotes the score for this server because JABAWS
138                         runs a Java port of RONN developed by Peter Troshin and distributed
139                         as part of <a href="http://www.biojava.org/">Biojava 3</a>
140                 </em>
141         </p>
142         <p>
143                 <strong><a name="iupred"></a><a
144                         href="http://iupred.enzim.hu/Help.php">IUPred</a></strong><br /> IUPred
145                 employs an empirical model to estimate likely regions of disorder.
146                 There are three different prediction types offered, each using
147                 different parameters optimized for slightly different applications. It
148                 provides raw scores based on two models for predicting regions of
149                 'long disorder' and 'short disorder'. A third predictor identifies
150                 regions likely to form structured domains.
151         </p>
152         <table border="1">
153                 <tr>
154                         <td><strong>Name</strong></td>
155                         <td><strong>Annotation type</strong></td>
156                         <td><strong>Description</strong></td>
157                 </tr>
158                 <tr>
159                         <td><strong>Long disorder</strong></td>
160                         <td>Annotation Row</td>
161                         <td>Prediction of context-independent global disorder that
162                                 encompasses at least 30 consecutive residues of predicted disorder.
163                                 Employs a 100 residue window for calculation.<br />Values above 0.5
164                                 indicates the residue is intrinsically disordered.
165                         </td>
166                 </tr>
167                 <tr>
168                         <td><strong>Short disorder</strong></td>
169                         <td>Annotation Row</td>
170                         <td>Predictor for short, (and probably) context-dependent,
171                                 disordered regions, such as missing residues in the X-ray structure
172                                 of an otherwise globular protein. Employs a 25 residue window for
173                                 calculation, and includes adjustment parameter for chain termini
174                                 which favors disorder prediction at the ends.<br />Values above 0.5
175                                 indicate short-range disorder.
176                         </td>
177                 </tr>
178                 <tr>
179                         <td><strong>Structured domains</strong></td>
180                         <td>Sequence Feature</td>
181                         <td>Features highlighting likely globular domains useful for
182                                 structure genomics investigation. <br />Post-analysis of disordered
183                                 region profile to find continuous regions confidently predicted to
184                                 be ordered. Neighbouring regions close to each other are merged,
185                                 while regions shorter than the minimal domain size of at least 30
186                                 residues are ignored.
187                         </td>
188                 </tr>
189         </table>
190         <p>
191                 <strong><a name="globplot"></a><a
192                         href="http://globplot.embl.de/">GLOBPLOT</a></strong><br /> Defines regions
193                 of globularity or natively unstructured regions based on a running sum
194                 of the propensity of residues to be structured or unstructured. The
195                 propensity is calculated based on the probability of each amino acid
196                 being observed within well defined regions of secondary structure or
197                 within regions of random coil. The initial signal is smoothed with a
198                 Savitzky-Golay filter, and its first order derivative computed.
199                 Residues for which the first order derivative is positive are
200                 designated as natively unstructured, whereas those with negative
201                 values are structured.<br />
202         <table border="1">
203                 <tr>
204                         <td><strong>Name</strong></td>
205                         <td><strong>Annotation type</strong></td>
206                         <td><strong>Description</strong></td>
207                 </tr>
208                 <tr>
209                         <td><strong>Disordered Region</strong></td>
210                         <td>Sequence Feature</td>
211                         <td><br />Sequence features marking range(s) of residues with
212                                 positive dydx values (correspond to the #Disorder column from JABAWS
213                                 results)</td>
214                 </tr>
215                 <tr>
216                         <td><strong>Globular Domain</strong>
217                         <td>Sequence Feature</td>
218                         <td>Putative globular domains</td>
219                 </tr>
220                 <tr>
221                         <td><strong>Dydx</strong></td>
222                         <td>Annotation row</td>
223                         <td>First order derivative of smoothed score. Values above 0
224                                 indicates residue is disordered.</td>
225                 </tr>
226                 <tr>
227                         <td><strong>Smoothed Score<br />Raw Score
228                         </strong></td>
229                         <td>Annotation Row</td>
230                         <td>The smoothed and raw scores used to create the differential
231                                 signal that indicates the presence of unstructured regions.<br /> <em>These
232                                         are hidden by default, but can be shown by right-clicking on the
233                                         alignment annotation panel and selecting <strong>Show
234                                                 hidden annotation</strong>
235                         </em>
236                         </td>
237                 </tr>
238         </table>
239         <p>
240                 <em>Documentation and thresholds for the JABAWS Disorder
241                         predictors adapted from a personal communication by Nancy Giang,
242                         2012.</em>
243         </p>
244 </body>
245 </html>