JAL-1517 update copyright to version 2.8.2
[jalview.git] / help / html / webServices / proteinDisorder.html
1 <html>
2 <!--
3  * Jalview - A Sequence Alignment Editor and Viewer (Version 2.8.2)
4  * Copyright (C) 2014 The Jalview Authors
5  * 
6  * This file is part of Jalview.
7  * 
8  * Jalview is free software: you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License 
10  * as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
11  *  
12  * Jalview is distributed in the hope that it will be useful, but 
13  * WITHOUT ANY WARRANTY; without even the implied warranty 
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
15  * PURPOSE.  See the GNU General Public License for more details.
16  * 
17  * You should have received a copy of the GNU General Public License along with Jalview.  If not, see <http://www.gnu.org/licenses/>.
18  * The Jalview Authors are detailed in the 'AUTHORS' file.
19 -->
20 <head>
21 <title>JABAWS Protein Disorder Prediction Services</title>
22 </head>
23 <body>
24         <p>
25                 <strong>JABAWS Protein Disorder Prediction Services</strong> <br />
26                 The <strong>Web Services&rarr;Disorder</strong> menu in the alignment
27                 window allows access to protein disorder prediction services provided
28                 by the configured <a href="http://www.compbio.dundee.ac.uk/jabaws">JABAWS
29                         servers</a>. Each service operates on sequences in the alignment or
30                 currently selected region (<em>since Jalview 2.8.0b1</em>) to identify
31                 regions likely to be unstructured or flexible, or alternately, fold to
32                 form globular domains.
33         </p>
34         <p>
35                 Predictor results include both <a href="../features/seqfeatures.html">sequence
36                         features</a> and sequence associated <a
37                         href="../features/annotation.html">alignment annotation</a> rows.
38                 Features display is controlled from the <a
39                         href="../features/featureSettings.html">Feature Settings</a> dialog
40                 box. Clicking on the ID for a disorder prediction annotation row will
41                 highlight or select (if double clicked) the associated sequence for
42                 that row. You can also use the <em>Sequence Associated</em> option in
43                 the <a href="../colourSchemes/annotationColouring.html">Colour By
44                         Annotation</a> dialog box to colour sequences according to the results of
45                 predictors shown as annotation rows.
46         </p>
47         <p>JABAWS 2.0 provides four disorder predictors which are described
48                 below:</p>
49         <ul>
50                 <li><a href="#disembl">DisEMBL</a></li>
51                 <li><a href="#iupred">IUPred</a></li>
52                 <li><a href="#ronn">RONN</a></li>
53                 <li><a href="#globplot">GlobPlot</a></li>
54         </ul>
55         <p>
56                 <strong><a name="disembl"></a><a href="http://dis.embl.de/">DisEMBL
57                                 (Linding et al., 2003)</a> </strong> <br /> DisEMBL is a set of machine-learning
58                 based predictors trained to recognise disorder-related annotation
59                 found on PDB structures.
60         </p>
61         <table border="1">
62                 <tr>
63                         <td><strong>Name</strong></td>
64                         <td><strong>Annotation type</strong></td>
65                         <td><strong>Description</strong></td>
66                 </tr>
67                 <tr>
68                         <td><strong>COILS</strong></td>
69                         <td>Sequence Feature &amp;<br />Annotation Row
70                         </td>
71                         <td>Predicts loops/coils according to DSSP definition<a
72                                 href="#dsspstates">[1]</a>.<br />Features mark range(s) of residues
73                                 predicted as loops/coils, and annotation row gives raw value for
74                                 each residue. Value over 0.516 indicates loop/coil.
75                         </td>
76                 </tr>
77                 <tr>
78                         <td><strong>HOTLOOPS</strong></td>
79                         <td>Sequence Feature &amp;<br />Annotation Row
80                         </td>
81                         <td>&quot;Hot loops constitute a refined subset of <strong>COILS</strong>,
82                                 namely those loops with a high degree of mobility as determined from
83                                 C&alpha; temperature factors (B factors). It follows that highly
84                                 dynamic loops should be considered protein disorder.&quot;<br />
85                                 Features mark range(s) of residues predicted to be hot loops and
86                                 annotation row gives raw value for each residue. Values over 0.6
87                                 indicates hot loop.
88                         </td>
89                 </tr>
90                 <tr>
91                         <td><strong>REMARK465</strong></td>
92                         <td>Sequence Feature &amp;<br />Annotation Row
93                         </td>
94                         <td>&quot;Missing coordinates in X-ray structure as defined by
95                                 remark465 entries in PDB. Nonassigned electron densities most often
96                                 reflect intrinsic disorder, and have been used early on in disorder
97                                 prediction.&quot;<br /> Features gives range(s) of residues
98                                 predicted as disordered, and annotation row gives raw value for each
99                                 residue. Value over 0.1204 indicates disorder.
100                         </td>
101                 </tr>
102         </table>
103
104         <p>
105                 <a name="dsspstates"></a>[1]. DSSP Classification: &alpha;-helix (H),
106                 310-helix (G), &beta;-strand (E) are ordered, and all other states
107                 (&beta;-bridge (B), &beta;-turn (T), bend (S), &pi;-helix (I), and
108                 coil (C)) considered loops or coils.
109         </p>
110
111
112         <p>
113                 <strong><a name="ronn"></a><a
114                         href="http://www.strubi.ox.ac.uk/RONN">RONN</a></strong> <em>a.k.a.</em>
115                 Regional Order Neural Network<br />This predictor employs an approach
116                 known as the 'bio-basis' method to predict regions of disorder in
117                 sequences based on their local similarity with a gold-standard set of
118                 disordered protein sequences. It yields a set of disorder prediction
119                 scores, which are shown as sequence annotation below the alignment.
120         </p>
121         <table border="1">
122                 <tr>
123                         <td><strong>Name</strong></td>
124                         <td><strong>Annotation type</strong></td>
125                         <td><strong>Description</strong></td>
126                 </tr>
127                 <tr>
128                         <td><strong>JRonn</strong>[2]</td>
129                         <td>Annotation Row</td>
130                         <td>RONN score for each residue in the sequence. Scores above
131                                 0.5 identify regions of the protein likely to be disordered.</td>
132                 </tr>
133         </table>
134         <p>
135                 <em>[2]. JRonn denotes the score for this server because JABAWS
136                         runs a Java port of RONN developed by Peter Troshin and distributed
137                         as part of <a href="http://www.biojava.org/">Biojava 3</a>
138                 </em>
139         </p>
140         <p>
141                 <strong><a name="iupred"></a><a
142                         href="http://iupred.enzim.hu/Help.php">IUPred</a></strong><br /> IUPred
143                 employs an empirical model to estimate likely regions of disorder.
144                 There are three different prediction types offered, each using
145                 different parameters optimized for slightly different applications. It
146                 provides raw scores based on two models for predicting regions of
147                 'long disorder' and 'short disorder'. A third predictor identifies
148                 regions likely to form structured domains.
149         </p>
150         <table border="1">
151                 <tr>
152                         <td><strong>Name</strong></td>
153                         <td><strong>Annotation type</strong></td>
154                         <td><strong>Description</strong></td>
155                 </tr>
156                 <tr>
157                         <td><strong>Long disorder</strong></td>
158                         <td>Annotation Row</td>
159                         <td>Prediction of context-independent global disorder that
160                                 encompasses at least 30 consecutive residues of predicted disorder.
161                                 Employs a 100 residue window for calculation.<br />Values above 0.5
162                                 indicates the residue is intrinsically disordered.
163                         </td>
164                 </tr>
165                 <tr>
166                         <td><strong>Short disorder</strong></td>
167                         <td>Annotation Row</td>
168                         <td>Predictor for short, (and probably) context-dependent,
169                                 disordered regions, such as missing residues in the X-ray structure
170                                 of an otherwise globular protein. Employs a 25 residue window for
171                                 calculation, and includes adjustment parameter for chain termini
172                                 which favors disorder prediction at the ends.<br />Values above 0.5
173                                 indicate short-range disorder.
174                         </td>
175                 </tr>
176                 <tr>
177                         <td><strong>Structured domains</strong></td>
178                         <td>Sequence Feature</td>
179                         <td>Features highlighting likely globular domains useful for
180                                 structure genomics investigation. <br />Post-analysis of disordered
181                                 region profile to find continuous regions confidently predicted to
182                                 be ordered. Neighbouring regions close to each other are merged,
183                                 while regions shorter than the minimal domain size of at least 30
184                                 residues are ignored.
185                         </td>
186                 </tr>
187         </table>
188         <p>
189                 <strong><a name="globplot"></a><a
190                         href="http://globplot.embl.de/">GLOBPLOT</a></strong><br /> Defines regions
191                 of globularity or natively unstructured regions based on a running sum
192                 of the propensity of residues to be structured or unstructured. The
193                 propensity is calculated based on the probability of each amino acid
194                 being observed within well defined regions of secondary structure or
195                 within regions of random coil. The initial signal is smoothed with a
196                 Savitzky-Golay filter, and its first order derivative computed.
197                 Residues for which the first order derivative is positive are
198                 designated as natively unstructured, whereas those with negative
199                 values are structured.<br />
200         <table border="1">
201                 <tr>
202                         <td><strong>Name</strong></td>
203                         <td><strong>Annotation type</strong></td>
204                         <td><strong>Description</strong></td>
205                 </tr>
206                 <tr>
207                         <td><strong>Disordered Region</strong></td>
208                         <td>Sequence Feature</td>
209                         <td><br />Sequence features marking range(s) of residues with
210                                 positive dydx values (correspond to the #Disorder column from JABAWS
211                                 results)</td>
212                 </tr>
213                 <tr>
214                         <td><strong>Globular Domain</strong>
215                         <td>Sequence Feature</td>
216                         <td>Putative globular domains</td>
217                 </tr>
218                 <tr>
219                         <td><strong>Dydx</strong></td>
220                         <td>Annotation row</td>
221                         <td>First order derivative of smoothed score. Values above 0
222                                 indicates residue is disordered.</td>
223                 </tr>
224                 <tr>
225                         <td><strong>Smoothed Score<br />Raw Score
226                         </strong></td>
227                         <td>Annotation Row</td>
228                         <td>The smoothed and raw scores used to create the differential
229                                 signal that indicates the presence of unstructured regions.<br /> <em>These
230                                         are hidden by default, but can be shown by right-clicking on the
231                                         alignment annotation panel and selecting <strong>Show
232                                                 hidden annotation</strong>
233                         </em>
234                         </td>
235                 </tr>
236         </table>
237         <p>
238                 <em>Documentation and thresholds for the JABAWS Disorder
239                         predictors adapted from a personal communication by Nancy Giang,
240                         2012.</em>
241         </p>
242 </body>
243 </html>